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Abstract 

I f~  (x) stands for the number of primes not exceeding x then the existence 
of two effectively calculable constants Cl and c2 is proved so that for T > cl, 

g~ 

the number V (T) of sign changes of (z (x)--f dv/logv) in (0, T) is greater than 
c21ogloglog T. 2 

1. I f  ~ (x) s tands  for the  n u m b e r  of  pr imes  ~ x and  

dr 
li* x ~ log r 

0 

( taken as pr incipal  va lue  a t  r ~-1) t hen  R I ~ A ~  [1] made  in his 
f amous  pape r  the  asser t ion t h a t  for x > 2  the  inequal i ty  

z ( x )  < l i * x  (1.1) 

holds. Though  D. N. LEHMER [2] showed its va l id i ty  for x < 10~, 

LITTLEWOOD [3] found  in the  same yea r  t h a t  (1.1) is no t  t rue.  

H e  even  showed t h a t  replacing the  funct ion l i*x  b y  the  more  
h a n d y  funct ion  

l ix  = f dr (1.2) 
3 l og r  
2 

there  are sequences 
! ! 

x 1 <~x 2 ~ . . . - > ~  
H f? 

x I ~ x  2 ~ . . .  --->~ 
(1.3) 

1 1 "  
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for which the inequalities 

Fx 
~r (x') - -  li x: > c ~ log log log x 

0.4) 
" " " 1 1 " ( x )  - -  11 x < - -  c 1 ,, log og og x ,  

og X~ 

hold. LA~D~tT wrote in his "Vorlesungen fiber Zahlentheorie" [4]: 
"Der Hardy-Litt lewoodsehe Beweis 1 (of 1.4) gehSrt zu den schSn- 
sten Friichten der analytisehen Zahlentheorie". 

2. The inequalities (1.4), however beautiful, are not quite 
satisfactory from two reasons. The first one--noticed by  LITtLE- 
WOOD himself--refers to the numerical result of D. N. LEHMER. 
This indicates tha t  the first sign-changing place of 

@ ) - - l i x  d---~r A1 (x) (2.1) 

must be "very large" and it would be desirable to find an effective 
numerical upper bound for it. Curiously enough the original proof 
of (1.4) cannot furnish such a bound. LITTT,WWOOD himself as well 
as others returned repeatedly to this question which was solved 
not earlier than 1955 by  S~v,w~s [6] with the first effective bound 
e4 (7,705) where e~(x) stands for ~-times iterated exponentials. The 
second one refers to the fact that  the inequality (1.4) does not 
give any indication on the oscillatory nature of the error-term AI (x). 
Such work started with a paper of PO,YA [7] but  the first essential 
restfl~ on A1 (x) was due to I ~ c ~  [8]. He proved the existence 
of a constant co so that  for Y > 1 the interval 

[Y, Co Y] (2.2) 

contains a sign-change of Al(x), under an unproved condition 
however. This condition asserts the existence of a O with �89 =< 0 < 1 
so that  

~ ( a ) # 0  for a > O  (2.3) 

but  for a suitable real to 
C (O + ire) = 0. (2.4) 

This is satisfied e. g. ff Riemann's conjecture is true. In  our paper 
[9] we found the unconditional theorem that  for Y > I70 the in- 
terval 

[Y, Yexp {log~ Y (loglog y)4}] (2.5) 

1 See [5]. 
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contains a sign-change of di(x). However, this theorem is ineffec- 
tive since our proof does no~ furnish ~n effective Y0. 

8. So what  we really want to do, would be unconditional and 
effective theorems of (2.2)- or (2.5)-type. No such results are known 
up to now. But  if we are more modest and content ourselves with 
a lower bound for Vi(Y) ,  the number of sign-changes of Ai(x) 
with 

2 < x  < Y, (3.1) 

the situation changes. As was found by  the first of us (see [10]) 
the inequality 

Vi (Y) > e-35 log log log log Y (3.2) 

holds unconditionally for 

Y >e5 (35). (3.3) 

The essential new tool in the proof of (3.2)--(3.3) was a "onesided" 
powersum theorem (see Ill]). (3.2)--(3.3) includes (though with 
a worse constant) Sx~w~,s' result. 

In the recent book of W. g. ELLIso~r and ~ .  ME~D~s FRi~CE 
(see [12]), after announcing the theorem (3.2)--(3.3) on p. 224 the 
authors write the following: "Line amdlioration de ce rdsultat, ne 
serait-ce que la suppression d'un Log, semble 6tre un problbme 
tr~s dffficile". The aim of the present note is to prove that  such 
a suppression is possible. More exactly 

Theorem. There are effectively computable constants ci and c2 so 
that for Y > ci the inequality 

V1 (Y) > c~. log log log Y 
holds. 

4. In the proof of our theorem we shall use the following 

Lemma I. There is an effectively calculable constant ca with the 
following property: I f  for a Z > c3 the function ~ (s) has a zero 

e* = f l * - ~ i 7 *  (4.1) 
with 

2 (log log Z)5 4 
8 . > 1 +  , (4.2) 

]/log Z 
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then with the notation 

[Z, Z e x p  {log~ Z (loglog Z)4}] ~ 1 (Z) 

the inequalities 

(4.3) 

max A1 (x) >= �89 Z~* exp  ( - -  ~/l-og Z) 
XeI(Z) (4.4) 

min AI (x) g - -  �89 Zo* exp (-- ]/]o-g Z) 
xel(Z) 

hold. 

This was theorem I I I  in our paper  [9]. Hence  A1 (x) has a sign 
change in I(Z).  

5. Le t  the sequence a~ be defined recursively b y  a0 ~ e  and 

a~+l = a~exp {log~+~a~}, v ---- 0, 1 , . . .  (5.1) 
w h e r e  

o < e < 1 (5.2) T6" 

Then we shall need the easy 

L e m m a  II. For ~,>= 1 the inequality 

a~ = exp (2 log a0" ~4+ 17 ~} (5.3) 
holds. 

For  the  proof  we have with loga~ ---- b~ the  recursion 

b~+l=b~-i-b+ +~, ~>=0. (5.4) 

I t  is enough to show 

b~__<2b0v 4+17~, ~ 1 .  (5.5) 

This is t rue for v = 1. Fur the r  we remark  tha t  for v >~ 1 

] -~-~' - 1 +  (51/4-13) e+17e2 ~-- 1 -{-~ -1 -e /4+17~  -~ 1 -~ 1/v < 

< 1 -}- (4 + 17 ~)/v < (1 + 1/~) 4+17e 

i .e .  y4+17e + ~a+(51/a+a)e+lw ~ < (v + 1) a+lv~. (5.6) 

Hence  if (5.5) is t rue for v-----vl, then from (5.4) and (5.6) follows 
indeed 

b~z+z ~ 2bo �9 "~l 4+17e -~- '(2b"y4+lTe~i+e<" i , = 2bo (v~ +17e + ~i (4+17~) (~+~)) ---- 

----- 2bo (~+zT~ + Y31+(51/4+4) S+17e2 ) < 2bo (T' I -~- i) 4+17e �9 
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6. Let  0 < e <  1 be fixed; let ca be so large tha t  for x>c4 
the  inequalities 

(log log x) 1~ < log' x 

log log log x < ~ log log x (6.1) 

log 2 x < ~/5 

hold. Wi th  c3 of  lemma I we fix an arb i t rary  Y with 

Y > max  {exp (~-exp 20), exp (log~/5 max (c3, c4))}. (6.2) 

In  the proof  of our theorem we distinguish two cases. 

Case I. There is a zero Oo:fio+iTo of ~(s) with 

r i o > � 8 9  21og-~ Y, 0 < 7 o < l o g ~  Y. (6.3) 

Then we can app ly  lemma I with 

Z = exp log5/6 y ,  0* = ~0; 

this assures the  existence of a sig~-change of  Al(x) in I(Z) and 
consequent ly  in (a0, al) with  

ao = explog  5/6 Y, al = aoexploga/~+~ao. 

B u t  lemma I is also applicable with 

Z = a l ,  ~ * =  e0 ; 

this gives again a sign-change of 31 (x) in (al, a2) with 

a2 = al exp log 8/4 + ~ a l .  

And so on. Since we want  a lower bound  for VI(Y), we have 

V l ( Y ) > m  (6.4) 
where 

ao ---- exp log  5/~ Y, a~+l ---- a~exp {log~/4+~a~} 
(6.5) 

am < Y <am+l .  

B y  lemma I I  we have 

Y < exp {21og5/8 Y. (m § 1)4+17~}, (6.6) 

/ l o g Y  ]~>�88 Y (6.7) i.e. Vl (r)  > �89  2 ogS-Zr] 

and this is much stronger than  required b y  our theorem. 
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7. Now we turn to the second case which can be written owing 
to the functional equation as 

Case I L  All zeros ~=f lq- - iy  of $(s) with 

[ y [ =< logl/5 Y (7.1) 
are in the narrow strip 

1~--�89 < 2log-l/5 Y. (7.2) 

The t reatment  of this case uses ideas of LITTr,EWOOD, I•GHAM 
and Sx~wEs too. 

Le t - -wi th  the usual notat ions--  

A3 (r) ---- ~p(r)--r = ~ A ( n ) - - r  , (7.3) 
n ~ f  

A 2 ( r ) = l l ( r ) - - l i r = ~ ( r ) + � 8 9  (7.4) 

f 

~4 (r) = f~3 (0) dO. (7.5) 
1 

We shall need some well-known lemmaba which we shall explicitly 
state for the reader's convenience. 

Lemma m .  For r--> oo we have 

A1 (r) Aa (r) 
~-o(1)+ 1 =  

T 

log r f log u + 2 A4 (r) + A4 (u) 
rS/2 log~ - ~ -  J u 2 log a u 

2 

For a proof see e. g. [14], p. 103--104. 

Lemma IV. For n-->oo we have 

A4(u) =--~ uo+l 
q ( e +  1) 

0 

For a proof see e. g. [14], p. 73. 

du.  

~- 0 (u). 

8. So far (7.1)--(7.2) was not used. We shall need the simple 

Lemma V. Under the restrictions (7.1)--(7.2) w e  have for 

u_<__r~logl/5 Y (8.1) 
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the relation (o-sign refers to r) 

A1 (r) As (r) 
= - - 1 + o ( 1 ) .  

For the proof of this lemma we have owing to lemma I I I  to 
-~ q~o+l 

investigate Aa(u), especially the sum . This is 
q ( ~ + l )  

absolutely o 

< 
]U ] 3/2 +21~ r 1 

I+(0+1)1 +i++r +~ V< 
171 ~--log 1/5Y 1~']> Iogl/5r 

( l~176 
< luI312§ [ut2 l~ 1/5Y ]0(1), 

(8.2) 

and hence by (8.1) 

[Aa (r) [ 
- -  - o ( 1 ) .  
r3/2 log r 

(8.3) 

Further we get by (8.2) and (8.1) 

r r 
log r f log++ + 2 logr f (i/ 
-~ ] [Aa(u)] u21ogau du<O(1)--~-]  g~og~u- F 

loglog Y 1 ) 
+ log1/5 Y " log~u du=o(1), 

which proves the lemma. 

9. Due to lemma V A1 (r) has certainly a sign change in a sub- 
interval J of (8.1) if we can show that  

A3 (r) > 5 Aa (r) < 0 
min ]/~_ (9.1) 

say. The advantage of it lies in the fact that  owing to the yon 
Mangoldt's form of Riemann's "exact" primenumber formula 
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A3(r) (see [15]) can be more directly dealt with than Al(r). This 
can be wri t ten--conveniently to our purposes--  

G(v)aefA3(ev)e - ~ / 2 = -  ~ --e(~-~)v A- 

Ivl <loul/5Y (9.2) 

A- 0 (1) ev/21og-i/5 Y" {v 2 + (loglog y)2} + O(ve-v/u). 

The restriction (8.1) is satisfied requiring 2 

log log log Y _< v < ~ log log Y; (9.3) 

hence (9.2) takes the form 
Z e(o-�89 

G (v) = - -  - -  + o (1). (9.4) 

I~l ~]og 1/5Y 

10. In order to simplify the sum on the right we may  use 
(7.1)--(7.2). Using also (9.3) we have 

l e(~-�89 el~v e(~-�89 1 1 
< -4- -- 

e i7 ~ ~ i7 

= 0 (1) ", log1/5 y -k ; 

Thus we get from (9.4) 

]G(v)q- ~ eiVv/iTl<cs. (10.1) 
171 ~log 1/5Y 

11. The required inequalities of (9.1)-type will be obtained 
following the idea of BOHR--LITTLEWOOD by using appropriately 
Diriehlet's theorem. But  using it directly the number of terms in 
the sum would be too large; to avoid this we shall use the "term- 
shortening" idea of I~Gt~A~ which boils down to an appropriate 
use of the Fejdr-kernel 

1 ~Isin(y/2)\ 2 {10--[r' f ~  (11.1) 

- - o o  

For this sake let A > e  4 and B be sufficiently large numerical 
effective constants, B an integer >= 8 to be determined later and 
o~ so large that  

log log log Y < ~ co < ~ o) < �89 log log Y. (11.2) 

2 Owing to (6.1)--(6.2) this makes sense. 
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{sin(  
Multiplying in (10.1) by A l- ~A-~-----~ ] we can integrate 

3 5 �9 over [~co,~m], introducing the new variable y by v~ m +y/A we 
get from (10.1) 

A ~14 

f \ ~f~ G(m+y/A)dy+ 
- - A  o]4 

A ml4 

e~a . f  (sin(y/2)t2e~(Y/a)YdY I q- ~ i7 y]-~ ] < (11.3) 
l yl --~ log 1/5 17 - -A o/4 

A oJ/4 

f [ sin (y/2)t2 

A a[4 

In order to use (11.1) we have to complete the integrals in the 
sum of (11.3); doing this the error is absolutely 

oO 

0 < ~' < iogU5 y 

The contribution of the terms with J yj=< A is evidently 

Z 1 1 as log~A 
- - - - < - -  - - < c 9 .  (11.5) y A m  co A 

O < y ~ A  

C7 

The contribution 
integration 

of the remaining terms in H is after partial 

A-" (A. (Alm)~ Ar z __1) c~0Z 1 < c~o ~ + - -  " ~ m  < c u  + --m --~2 < c12. 

A ~ ]Yl ~log 1/5~z ?~>__A 

Now by (11.1) we get from (11.3) 
A o)/4 

- ~  ~/4 (11.6) 

- - W , -  < c6 + ~9 + e12 = c13. 

0 < ~ A  

This is the "short" formula of INO~AM, adapted to our situation. 

a I~ere a n d  l a t e r  t h e  G-s a r e  p o s i t i v e  n u m e r i c a l  c o n s t a n t s  w h o s e  v a l u e s  
do  n o t  d e p e n d  o n  A,  B e i t he r !  
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As a last preparation we need the very elegantly proved lemma 
of INGH~a~ in [8]. 

Lemma VI. Putting 

the inequality 

l~ 2A d~, 
~o (11.7) 

A 

1 - - - ~ / s i n y  ao 1 log = < 2 G14 
A ] r 2 

0 < y < A  

holds. 
Hence for q-~0 the sum in (11.6) can be made "big positive", 

resp. "big negative". 

12. Let us denote the number of y's with 0 < y g A  by N(A);  
it is well-known tha t  

N (A) < cisAlogA (12.1) 
and owing to A > 15 

2V (A) > 1. (12.2) 

We shall construct the disjoint intervals 

I~ = [B(2~-l)2v(A), Bg'vlV(A)], ~ ---- 1, 2 , . . .  ; (12.3) 

ff we succeed in producing sign-changes in all Iv's satisfying (9.3) 
we shall be ready. The number of such Iv's is 

1 
> �9 loglog log Y (12.4) 

1 0 N ( A ) l o g B  

if Y >~p (A, B). (12.5) 

13. In  order to produce sign-changes in the I / s  in (9.3) we 
shall apply Dirichlet's theorem on simultaneous approximation 
twice. For each such fixed Iv this gives the existence of an ~o~ and 

?r 

% with 
~ : - - ~ o e I , ,  o ;  + ~0eI , ,  (13.1) 

so that  for each 0 < y=< A we have with suitable rational integers 
t r t  

ev,, and er, , the inequalities 

,__<i r , ,  , ,  i r (13.2) 
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which hold simultaneously. From this one gets easily 

, < 616 ,, ~16 
l s i n y % - - s i n y ~ o [ = - ~ ,  I s i n 7 %  + s i n ~ o [ < - ~ -  

and hence using lemma VI 

z (  ' ' z '  2 1 - -  > g log  ~0  - -  c14 cle - - .  
5~ B y 

0<y=<A 0 < y < A  

By (12.1) it follows consequently tha t  

i. e. choosing 

__1 < c17 log 2 A,  ,/ r y 
0<~,--<A 

B =- [log2 A] (> 8) 

we get from (11.7) 

log 2 A 
0 < 7 ~ A  

1 A 
= ~ l O g l o g  2A 'clg. 

Put t ing  this into (11.6) we get 

A eo'[~ 

2z~ y12 ] G % +  dy <--~lOg log~A 
- - A  o~/4 

which is for A >c20 

< - - � 8 9  
and analogously 

' t ~ i ~  ' ,, >~,o~. 
o 

The restriction (12.5) takes the form Y >~1 (A). 
Since by (11.1) we have 

co  

1 f [sin(yl 2))2 dy = 1 

2z~ J t yl 2 
- -  00  

C 1 4 - - 6 1 8 : -  

(13.3) 

(13.~)  

(13.5) 

- -  + c18 § c19 

(13.6)  

(13.7) 
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(13.6)--(13.7) g ives- -us ing  (9 .2)- -  

m a x  e-v/2As (e v) > �89 
(s/4) ~ _~ v _-< (5/4) ~or 

and  rain e-v/2Aa(e v) < - - � 8 9  
(3/4)~; < v < (5/4)~; 

using l emma V we get  

m a x  ve-v/2.di(e v) > ~ l o g A - - ~  > [ l o g A  (13.8) 
(3/4) ~,;; <: v ~ (514) ~i; 

for A >ce l  and also 

min ve-v/2Az(e v) < - - � 8 8  (13.9) 
(3/4) o4 < v < (5/4)~; 

14. We wrote  in 12. t h a t  " . . .  i f  we succeed in producing sign- 
changes in all I / s  satisfying (9.3), we shall be r eady  . . . " .  This  
was wr i t t en  only  as an indicat ion of  the  line of reasoning. In  
rea l i ty  we can do this only for the  intervals  

I*  dell8= L~ min ,tw'~, o)~'), ~ m a x  (o~, ~o~')] . (14.1) 

The  existence of  a sign-change of  d l  (e v) in/~* follows f rom (13.8)--  
(13.9) ; we shall keep only  those in [Iogloglog Y, ~-loglog Y] and  we 
have  only  to  show t h a t  t h e y  are disjoint. B u t  owing to  (13.1) and  
(11.7) and  B_>_8 we have  

max (~:, ~,") < ~ (B~,N (~) + 1) =< ~ B~,N (A) =< (~/2 B) B(~, + ~)~ (A) < 

~___ (5/B) rain (w,-1,0),+1) < 3 man (s ~og+ 1), (5/B)B(2"+I)N(A)--I) < . . . . . . .  

and analogously 

~min  ((o;, o)'j) > ~ m a x  (~0,-1,0~,-1), 

so t h a t  the /~* 's  are dis joint  indeed. Thus  observing t h a t  all of  our 
previous  restr ic t ions on A were lower l imitat ions we can choose 

A ~ c22 and  hence for Y ~c23 

Vz (Y) ~ V1 (log z/5 Y) ~c9410gloglog Y 

indeed. Thus  also case I I  is settled. 
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