Monatshefte fiir Mathematik 82, 163—175 (1976)
© by Springer-Verlag 1976

On the Sign Changes of (= (x)—Ilix). II.

By
S. Knapowski 1 and P. Turan, Budapest
( Received 16 January 1976)

Dedicated to Prof. Dr. E. Hlawka on the occasion
of his 60th birthday

Abstract

If 7 (x) stands for the number of primes not exceeding x then the existence
of two effectively calculable constants ¢ and ¢z is proved so that for 7 > ¢y,

the number V (7) of sign changes of (x(x)— j dvflogw) in (0, T') is greater than
czlogloglog T'.

1. If n(z) stands for the number of primes <z and

li* g =
re= flogr

(taken as principal value at r=1) then RieMaxw [1] made in his
famous paper the assertion that for  >2 the inequality

7 (x) <li*z (1.1)

holds. Though D. N. LEaMER [2] showed its validity for x < 107,
LrrteEwoop [3] found in the same year that (1.1) is not true.
He even showed that replacing the function li*z by the more

handy function
liz= 1.2
14 == f Togr (1.2)

Ty <Ly <...—>00

there are sequences

1.3)
Ty <oy <...>® (

11*
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for which the inequalities
w () —liz, >c¢ Iogx;:,, logloglogz,

(1.4)

U4 s " x—:a’ 4

7 (x,)—liz, <—c¢ @logloglogxﬂ

hold. LaNDAU wrote in his “Vorlesungen iiber Zahlentheorie’ [4]:

“Der Hardy-Littlewoodsche Beweis! (of 1.4) gehort zu den schén-
sten Friichten der analytischen Zahlentheorie®.

2. The inequalities (1.4), however beautiful, are not quite
satisfactory from two reasons. The first one—noticed by LirTLE-
woop himself—refers to the numerical result of D. N. LuEMER.
This indicates that the first sign-changing place of

7 (@) —liz ™ Ay (z) (2.1)

must be “very large’’ and it would be desirable to find an effective
numerical upper bound for it. Curiously enough the original proof
of (1.4} cannot furnish such a bound. LiTTLEW0OD himself ag well
as others returned repeatedly to this question which was solved
not earlier than 1955 by SkEwEs [6] with the first effective bound
€4(7,705) where ¢, (x) stands for y-times iterated exponentials. The
second one refers to the fact that the inequality (1.4) does not
give any indication on the oscillatory nature of the error-term Aj(x).
Such work started with a paper of Pérya [7] but the first essential
result on A;(z) was due to INamaM [8]. He proved the existence
of a constant ¢y so that for ¥ >1 the interval

[Y,c0 Y] (2.2)

containg a sign-change of Ai(x), under an wunproved condition
however. This condition asserts the existence of a @ with 1 <6 <1
so that
(6)#20 for ¢>06 (2.3)
but for a suitable real g
£(O+itg)=0. (2.4)
This is satisfied e. g. if Riemann’s conjecture is true. In our paper
[9] we found the unconditional theorem that for Y > Y, the in-

terval
[Y, Y exp {logt Y (loglog Y)4}] (2.5)

1 See [5].
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contains a sign-change of 4;(z). However, this theorem is ineffec-
tive since our proof does not furnish an effective Y.

3. So what we really want to do, would be unconditional and
effective theorems of (2.2)- or (2.5)~type. No such results are known
up to now. But if we are more modest and content ourselves with
a lower bound for Vi(Y), the number of sign-changes of 4;(x)
with

2<%, (3.1)

the situation changes. As was found by the first of us (see [10])
the inequality
V1(Y) >e35]loglogloglog ¥ (3.2)

holds unconditionally for
Y >e5(35). (3.3)

The essential new tool in the proof of (3.2)—(3.3) was a “onesided”
powersum theorem (see [11]). (3.2)-—(3.3) includes (though with
a worse constant) SKEWES’ result.

In the recent book of W. J. Err1soxy and M. MexpEs FraNcE
(see [12]), after announcing the theorem (3.2)—(3.3) on p. 224 the
authors write the following: “Une amélioration de ce résultat, ne
serait-ce que la suppression d'un Log, semble &tre un probléme
trés difficile”. The aim of the present note is to prove that such
a suppression is possible. More exactly

Theorem. There are effectively computable constants ¢1 and ¢z so
that for Y > c; the inequality

Vi(Y) >czlogloglog Y
holds.

4. In the proof of our theorem we shall use the following

Lemma 1. There is an effectively calculable constant c3 with the
following property: If for a Z > cg the function (s) has @ zero

¥ =p*+iy* (4.1)
with

2 (loglog Z)5
S e -t

4..‘.__
pr=1+ y*|=Viog Z, (4.2)

l/log Z
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then with the notation
def

[Z, Z exp {log? Z (loglog Z)4}] = I (Z) (4.3)
the inequalities
max Ay (x) = 1 ZF exp (— l/Iog Z)
zel(Z) (4.4)

min 4 () < —1 Zf exp (— l/log Z)
zeI(%)

hold.
This was theorem IIT in our paper [9]. Hence 4;(x) has a sign

change in I(Z).
5. Let the sequence a, be defined recursively by ap >¢ and

ay1=ayexp {logitea,}, v=0,1,... (5.1)
where
0<e<s. (5.2)

Then we shall need the easy

Lemma II. For v=1 the inequality

ay,=<exp {2logay-yit+17¢} (5.3)
holds.
For the proof we have with loga, = b, the recursion

byr1 =0y +b¥*e, »=0. (5.4)

It is enough to show
by < 2boritlie, p=1, (5.5)
This is true for y= 1. Further we remark that for v=>1
14y 1+GLA-13)e+176" — | | p=1-6/4+176° < | | 1y <
<14 (44 1T )y < (14 1fp)stire
i. e. pA+17e | 3+ (51/4+4) e+178% (v + 1)4+17¢, (5.6)
Hence if (5.5) is true for v=w;, then from (5.4) and (5.6) follows
indeed
b”1+1§ 2b0_¢;%+17s + (2 bo ,,411+176)%+s§ 2by (,,%+17s + .,,{4+17e) (%+s)) —

2
= 2bp (1 +178 - 3 +GLAD E+176%) < 2 by (py -+ 1)3+175,
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6. Let 0<£<7L0 be fixed; let ¢4 be so large that for x >c¢4
the inequalities
(loglog z)12 < logex
logloglogx < - loglogx (6.1)
logzz<|/z
hold. With ¢s of lemma I we fix an arbitrary ¥ with
Y >max {exp (& exp 20), exp (log8/> max (cs, ¢4))} . (6.2)

In the proof of our theorem we distinguish two cases.
Case I. There is a zero go= fo+iyo of {(s) with

Po=1+2log-tY, 0<yo=logt?. (6.3)
Then we can apply lemma I with
Z =explogs® Y, p*=g;

this assures the existence of a sign-change of 4;(x) in I(Z) and
consequently in (ap,a;) with

ap =-explogs® Y, a1 =agexplogdi+teq,.
But lemma I is also applicable with
Z=a1, o*=g0;
this gives again a sign-change of 4; (z) in (a1, a2) with
s = a1 explog3/4teq; .

And so on. Since we want a lower bound for ¥1(Y), we have

Vi(Y)zm (6.4)
where
o = €Xp 10g5/6 Y, ayri=ay exp {10g3/4+8(h}
6.5
o< Y <apei. (6.5)
By lemma II we have
Y <exp{2logt/t Y- (m 4 1)4+17¢}, (6.6)
logY \#
. o logY
i e. Vi(Y)>1} (210g5/6Y) >1logl/a0y (6.7)

and this is much stronger than required by our theorem.
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7. Now we turn to the second case which can be written owing
to the functional equation as

Case I1. All zeros o=ty of {(s) with

7| <logljs ¥ (1.4)
are in the narrow strip
[—3%|=2log-15Y. (7.2)

The treatment of this case uses ideas of LITTLEWOOD, INGHAM
and SKEWES too.
Let—with the usual notations—
d3(r)=p(r)—r= Y A(n)—r, (7.3)

nEr

Ao(r) = (r)—lir=n(r)+in(r)+...—lir, (74)
Ag(r) = j:Ag (B)dd. (7.5)
1

We shall need some well-known lemmata which we shall explicitly
state for the reader’s convenience.

Lemma III. For r >0 we have

Al O oy +i=

e "

_da(r) logrfA4( )logu—f—zdu

oilogr Yy u2logdu
2

For a proof see e. g. [14], p. 103—104.

Lemma IV. For n—o0 we have

+1
A4<u)=—2§(%—1—)+0(u>.

4

For a proof see e. g. [14], p. 73.

8. So far (7.1)—(7.2) was not used. We shall need the simple

Lemma V. Under the restrictions (7.1)—(7.2) we have for

uZr=loglyY (8.1)
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the relation (o-sign refers to r)

M) ()
(1/?) yr
logr

For the proof of this lemma we have owing to lemma III to

—1+o(1).

u9+1
investigate Aj(u), especially the sum . This is
g a(u), especially Z et D
absolutely
|1 |8/2+210g~ 15 ¥ 1
< —+ |u? — <
21:5 CJele+ D | 2*1/: e
[7I =logl/°¥ Iy!>log!°Y (8.2)
loglog ¥
(!u[3/2—[—[ ul? W)O(I)’
and hence by (8.1)
[Aa(r)]
—_ " —g(1). 8.
logr =° ) (8.3)

Further we get by (8.2) and (8.1)

logr lo 2 logr i
gf“ g+ <0(1)g

“wrlogdu yr (l/ﬁ log2u +
2

loglog Y 1

du=o(1
logl/s Y logzu) w=o(l),

which proves the lemma.

9. Due to lemma V 4;(r) has certainly a sign change in a sub-
interval J of (8.1) if we can show that

ax 2300 min 220

reJ ]/7' ]/7‘

say. The advantage of it lies in the fact that owing to the von
Mangoldt’s form of Riemann’s “exact’” primenumber formula

<0 (9.1)
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As(r) (see [15]) can be more directly dealt with than A;(r). This
can be written-—conveniently to our purposes—

(0~3%)
G (v) & A3 (¢7) 02 = — E e L

Iv] <logtb¥ (9.2)
+ O (1)ev/2log=1/5 ¥ - {02 + (loglog Y )2} + O (ve-v/2).

The restriction (8.1) is satisfied requiring?

logloglog Y <v< lloglog ¥ ; (9.3)
hence (9.2) takes the form
elo-Hv
G ) =— Z +o(l). (9.4)
I7| <logl/Sy ¢

10. In order to simplify the sum on the right we may use
(7.1)—(7.2). Using also (9.3) we have

elo—-Hv etve ele—-Hv__give 1 1
'I“ — | =
e e vy

(1 loglog Y 1)_

4 iy

=0(1)

lo] "logipY 2
Thus we get from. (9.4)

|G+ Y etvvfiy|<cs. (10.1)

1yi<logl/3y

11. The required inequalities of (9.1)-type will be obtained
following the idea of BoER—ILITTLEWOOD by using appropriately
Dirichlet’s theorem. But using it directly the number of terms in
the sum would be too large; to avoid this we shall use the “term-
shortening” idea of INeEAM which boils down to an appropriate
use of the Fejér-kernel

1 w(sin(y/m)z {—|r| for—1<r<+1
5 —|etrydy =

2 y/2 0 for |r|=1.

For this sake let A >et and B be sufficiently large numerical

effective constants, B an integer =8 to be determined later and
o so large that

(11.1)

—= 00

logloglog Y <2w <Sw=lloglog¥. (11.2)

2 Owing to (6.1)—(6.2) this makes sense.
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. BRPRYNY
Maultiplying in (10.1) by 4 (%) we can integrate

over [2w,5w]; introducing the new variable y by v=w+y/4 we
get from (10.1)

Aw/d . o) \2
) f(M)G(w+y/A)dy+
wf4

/2
etvo 4n sin (y/2) ) |
+ (__m ety dy < (11.3)
2 f y/2 l
iy <logl/5 ¥
P sin2)
s (Y, 2
<¢s ———] dy <c¢g.3
f( y/2 ) v
— A wf4

In order to use (11.1) we have to complete the integrals in the
sum of (11.3); doing this the error is absolutely

S 5| [y

o<y = Iogl/ 5y
The contribution of the terms with |y|< 4 is evidently

i1 log2 4
=t —~~——<—c—8—' o8

O<ys4 4 Ao
The contribution of the remaining terms in H is after partial
integration
4 1 4 1 €10 1
<6102 (;é“w"f‘? Aw)<011+ —)—/’2‘<012-

A=)y sloglhy vZ4
Now by (11.1) we get from (11.3)

s )2
sin (y ¥
S el )

A4 w]4

y\ sinyw
4 E 1 ——
T ( A) Y
O<y=4d

This is the “short” formula of INarAM, adapted to our situation.

def [, (11.4)

< cg. (11.5)

(11.6)

=+ Co -+ Cra=Ci3.

* Here and later the ¢,-s are positive numerical constants whose values
do not depend on 4, B either!



172 S. KxarowskI and P. Turix

As a last preparation we need the very elegantly proved lemma
of INgHAM in [8].

Lemma VI. Putting

9ef o (11.7)

the inequality
y \sinyag 1 1
2 E 1—2 )22 g |
l ( A) y 2 Plal |
holds.

Hence for 4 «p the sum in (11.6) can be made “big positive”,
resp. “big negative”.

12. Let us denote the number of y’s with 0 <y< 4 by N(4);

it is well-known that
N(A) <C15A10gA (12.1)

and owing to 4 >15
Nd)=1. (12.2)

We shall construct the disjoint intervals
I,=[B@-LN BBWN@A] p=1,2,..; (12.3)

if we succeed in producing sign-changes in all I,’s satisfying (9.3)
we shall be ready. The number of such I,’s is

1
___ .logloglog ¥ 12.4
“ToN (d)log B 5 8% (12.4)

if Y >vy(4, B). (12.5)

13. In order to produce sign-changes in the I,’s in (9.3) we
shall apply Dirichlet’s theorem on simultaneous approximation
twice. For each such fized I, this gives the existence of an o, and
w, with

w,—aoely, o, +oely, (13.1)

so that for each 0 <y=<A4 we have with suitable rational integers
e, , and ¢, , the inequalities

1
B

Y
(@] —o0) —e,, | < 5 (0 +a)—e, | =

2 , (13.2
|z o

2x
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which hold simultaneously. From this one gets easily
. ' . C16 . " . C16
[siny wv—smyocoléﬁ , |sinyw, +sinyu{< 5 (13.3)

and hence using lemma VI

sin 1 ¢
2 E (1——) ! yw 510g————614-——-*li —

O<y=4 0<ySA

By (12.1) it follows consequently that

i <17 long s
0<y=4
i, e. choosing
B={log2A] (= 8) (13.4)
we get from (11.7)

9 Z . siny w, 1l A _
— 5 glong —C14~—C18 =

o<ys4d (13.5)
A

1

—lo .

=2 ®Tog2d log24 e
Putting this into (11.6) we get

Adwlls
1 sin (p/2) Y 1 A
py f (_y/z*—)a(w, +Z dy<—-log Tog +013+019

—Adwid

which is for 4 >e¢g

—3%logd, (13.6)
and analogously

o

A‘”r/
1 2
~ f (%l) G(wﬂu )dy> logd.  (13.7)

— A agfd

The restriction (12.5) takes the form Y >, (4).
Since by (11.1) we have

1 [ sin (y/2)\e ,
2 f( y/2 ) =1
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(13.6)—(13.7) gives—using (9.2)—
max e 2 Ag(e?) >Llog A
(8/4) 0} < v = (5/4) wf

and min e~ v2 A3 (e¥) < —1log 4;
B/ oy <o = (B/Hw)

using lemma V we get
max ve ?2 A1 (e?) >%logd—3 >;logAd (13.8)
(B9 0f S0 S (5/4) 0
for 4 >c¢2 and also
min ve vl Ay {ev) < —121logA4. (13.9)
(8/4) o} <0 < (5/4)

14. We wrote in 12. that “. .. if we succeed in producing sign-
changes in all I,’s satisfying (9.3), we shall be ready ...”. This
was written only as an indication of the line of reasoning. In
reality we can do this only for the intervals

IF &[S min (v, w}), 2 max (o, o,)]. (14.1)
The existence of a sign-change of 41 (e?) in I¥ follows from (13.8)—
(13.9); we shall keep only those in [logloglog ¥, lloglog Y] and we
have only to show that they are disjoint. But owing to (13.1) and
(11.7) and B=8 we have
5 max (0], w) = 5(BYN¥@ 4 1) < 5 BN W < (52 B) Ber+hN @) <

< (5/B)BEr+ DN ) —1) < (5/B) min (-1, w34 1) < $min (wper, 0541),

and analogously

2 min (wy, w}) >3 max (wy-1, wy-1),
so that the I'*'s are disjoint indeed. Thus observing that all of our
previous restrictions on 4 were lower limitations we can choose
A =cg3 and hence for ¥ >ce3

Vi(Y) > Vi(logl/s Y) >coalogloglog ¥

indeed. Thus also case II is settled.
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