
TWO OSCILLATION THEOREMS*

Harold G. Diamond, university of Illinois

Ingham established in [7] a method of estimating from below the

oscillation of a real-valued function in terms of the singularities

of its Laplace transform. This technique and a clever searching pro-

cedure with an electronic computer have led to the disproof of

various conjectures in number theory (cf. Haselgrove [6], Lehman [9]).
In this note we shall give some theorems which are analogous to

Ingham's, but are established in a rather different way.

Let f be a real-valued measurable function on [O,oo} and let

F(s} = J= e-suf(u}du. We assume that the integral converges for
o

Re s > 0 and that F can be continued as a meromorphic function to

a region of the complex plane which includes the imaginary axis.

Assume further that there are poles of F on the imaginary axis and

that they are all simple. Let

T = ttl' t 2 , ••• } = [t > 0: ti is a pole of F},

be the residue ofa finite or countable set. Let

and let a be the residue of
o

at O}.

We say that a finite subset

F

a n
at o a = 0 ifo

F

F

at it
n

is regular

'" .. , t. 1 c T
J.J

is a weakly independent subset of T of order N provided that
J
L n.t. E T for some integers n. with In j I ,s; N implies that
j=l J 1.. JJ

J
L In j I = 1. That is, the only way that a sum n.t. with
j=l J J..

J

In j I ,s; N can represent an element of T is that one n. = 1 and
J

all others be zero.
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We formulate our oscillation theorems in terms of the notion of

weak independence. Note that if T is linearly independent over the

integers, then any finite subset satisfies a weak independence condi­

tion of any order. It is not hard to establish the equivalence of our

two theorems. We shall prove the second theorem and indicate how one

deduces the first.

Theorem 1. Suppose there exist a finite collection of indices J and

a positive integer

dent subset of T

N such that

of order N.

[to E T: j E J}
]

Then

is a weakly indepen­

lim ess sup f (u) a + 2N I la. \'
x-+o:> U :l! X 0 N+l ]

J E J

lim ess inf f(u) 2N I la j I.a ­ N+1
x-+o:> u X 0

j E J

[X, (Xl) •is of one sign on

to the hypotheses of Theorem 1, assume that
Then there exists no real number X such that

Theorem 2.

N
2N

l I: la. 1> [a I.
-+ jEJ ] 0

f (or some Ll eguiva1ent)

Proof of Theorem 2. The case in which ao = 0, i.e., F regu­

lar at 0, follows immediately from Landau's Theorem on Mellin trans­

forms of nonnegative functions [8; Satz 454J. (It could also be

handled directly.) We henceforth assume for the proof of Theorem 2

that ao > O. Let KN be the N­th Fejer kernel

KN(x) )
inx 1

­ N+ e = N+1 O.

Let J be the cardinality of J and let xl' x2' ••• , x
J

sequence of real numbers. Form the product

be a

J N N J
In. I) in. x . }o :s; rr KN (x j) I I IT {(1 ­ e ] ]
N+1

j=l nl=­N n.=­N j=l
]

J ix.
1 + 2(1 ­ I Re e ] + S,

j=l
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repeated) •

J}. Let

Xj's (possibly the same x j
assume that J = [1,2, ••• ,

ic.
a.e J _ (mod and
J
is an integration vari-

c l' ••• , c
J

be real numbers such that arg

set x. = -ut. + c., where t. E T and u
J J J J

able to be specified.

where S is a real-valued trigonometric polynomial each of whose

terms involves at least two

For notational simplicity we

We assume that the conclusion of Theorem 2 is false, and there

exists an X such that f is of one sign on [X, 00). For CJ > 0 we

form

J ic.
F (CJ)

2N I Re [F (CJ+it.) e J} + I enF(CJ+iTn),+ N+l J
j=l

with suitable e 's and T 's By the weak independence condition no
n n •

Tn lies in T.

\' e F(CJ+iT ) =L n n

conclude that

Now let CJ .... 0+

co

0(1) , J 0,
u=X

and note that = 0(1),
u=O

ic. -1
and F (CJ+it . ) e J -- - Ia . ICJ •

J J
We

in contradiction to one of the hypotheses. Thus Theorem 2 is true.

We sketch the proof of Theorem 1 for the lower bound. Let E

be a small positive number and take

a'
o

Set g (u) = f (u) - a' and apply Theorem 2 to show that there exist
0

arbitrarily large values of X such that ess inf g (u) < O. Changing
u X

the last relation to one involving f and letting E .. 0+, we obtain

the second estimate of Theorem 1.
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Remarks. 1. It is clear from the proof that the meromorphy re­

quirement in both theorems is unnecessarily strong and can be replaced

by weaker but messier conditions.

2. The idea of using a product of Fejer kernels plus an indepen­

dence condition to estimate the values of a function dates back at

least to Bohr and Jessen [2].

3. Theorems 1 and 2 yield new proofs of some theorems and offer

the possibility of improving some known estimates. In particular, we

obtain another proof of the "variant form of Ingham's theorem" of

Bateman et al. [lJ and can improve estimates of Grosswald [4J, (5J

and Saffari [lOJ, [l1J, [12].

4. To obtain better numerical estimates in specific cases, one

should alter the proof of Theorem 2 as follows. First, in place of

the N­th Fejer kernel one should use the nonnegative trigonometric

polynomial

N

II
j=O

(
. (j+lJ1T) i jt/

2
s a n N+2 e

N

( I
j=O

. 2 JIT)­2
s a,n N+2

1 + (2 cos N:2) cos t + ••• •

It was proved by Fejer [3, page

nomial has the largest value of

metric polynomials of the form

79] that, for each N, this poly­

Al among all nonnegative trigono­

Second, in place of the product of J nonnegative trigonometric

polynomials each of degree N, one should multiply together the poly­

nomials P; (x.), where the N
J
. are judiciously chosen and are

j J
generally not all equal.

With these changes Theorem I can be stated as follows: Suppose

that N
l,

••• , N
J

are nonnegative integers such that

J

I
j=l

n.t. E T,
J J

J

= I
j=l

1.
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Then

lim ess sup f(u) a
x....'" u X 0

J

+2L
j=l

and

lim ess inf f(u) s ao
X....'" u X

(cos N .1T+2 ) la j I·
J

Also, we can replace the hypotheses of Theorem 2 by the above
assumption and the inequality

The conclusion of Theorem 2 then follows.

of no use in disproving

x 1, "" =Mooius' func-

5. The present theorems appear to be

conjecture that I ",,(n) I s jX,
n :SO x

tion. The number of weak independence relations to be checked is far

beyond the capacity of present day computers. We investigated the

applicability of the present method to the polya conjecture that

X(n) s 0, x 2, A = Liouville's function. This was shown to
n s; x

Mertens'

be false by Haselgrove [6J using Ingham's result and computing. Using

our method, improved as described in the preceding remark, and a table

contained in [6J, we showed how one could hope to obtain the required

weak independence by checking about 1012 sums, each involving at

most 12 summands. Unfortunately, it would require several weeks of

computer time to carry out such a project. This example suggests that

Ingham's theorem and "educated" trials on a computer is more practical

that our method for numerical work.

I wish to thank Professors paul T. Bateman and Emil Grosswald for

a number of helpful discussions and suggestions.
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