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1. Introduction. In the analytical number theory an important direction of
the investigations is the omega-estimations of number-theoretical functions. The
first, significant steg was the famous Landau’s theorem concerning the Dirichlet-
series with positive coeﬂ‘icients (E. LANDAU [1]). This theorem asserts that if the

Dirichlet-series F(s)= 2’ has nonnegative coefficients, further its convergence-

abscissa is o, then o is a smgular point of F(s). From this theorem easily follows
that e.g. Tm M(x)-x 2**>0, lim M(x)-x 3" <0, M(x)= Zu(n) In other
words there exists a sequence O<x]<x]<.. <X, <Xx] <. ,,x —oo such that

M (xv)>xv2 M) < -~-x’v’%' . But the question concerning the density of the
values is not answered by this theorem.

Recently S. KnaPowskI and P. TURAN [1], [2], [3] elaborated a method which
gives omega-estimations of many number theoretic functions, in more effective
form. Their proofs were based on the very deep results of Prof. TURAN in the theory
of diophantine approximation. S. KNAPOWSKI has dealt with similar questions
in the papers [1], [2], [3], and W. Stas in [1], [2], [3].

In this paper we shall deal with similar questions. The author in [1] obtained
some new effective results for number-theoretic functions without any conjectures.
In the proofs of these theorems an idea of Ropossky [1] is important. These results
were published partially in author’s paper [4]. The aim of this paper is to obtain
a more general theorem. Our earlier theorems will be direct consequences of this
theorem.

Throughout this paper ¢, ¢y, ¢,, ... will denote explicitely calculable numerical
constants not necessarily the same at every occurence. Further we use the notation
e (x)=e".

Acknowledgement. 1 am very indebted to Prof. P. TURAN and Mr. J. MoOGYORGDI
for their important remarks.

2. A theorem on Dirichlet integrals, Let

.1 o= [
1

(s =o+it)

and let the integral be absolutely convergent on the halfplane 6 >0, . Let us suppose
that A(x) is real and that

2.2) [A@)|=ex® if x=1,
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380 1. KATAT

where ¢, is a constant. Let, further f(s) be analitically continuable on the halfplane
o=>8,—0,, where 6, =0 is a suitable constant, 0<8,<#8,;. Let

2.3) 0=0,+1iy (y#0)

a pole of multiplicity k of f(s).
Let the Laurent-expansion over s =g of f(s) be of the form

2.4 f)=P((s~0)")+2(),
where
.5 P(x)=byx+bx2+...+bx*  (b,#0),

is a polynomial of degree k, and g(s) is a function, which is regular in the neigh-
bourhood of s=y.

Let D(g) denote the set of s=¢ 4-it, which satisfy the inequalities o2 —¢? >
>(0,—¢)?, 8,—e=0=0,+¢ ie in notation

(2. 6) Dgy={s; 02 —1?>(0,—¢)?, 0, —e=0=0,+¢}.

Now we define the curves Ci(e), C,(e) as

2
2.7 C1(8)={s; 02—t2=[02—§] ,Hz—jﬁéaéal-l-a},
RS
2.8 C2(3)={S§0':01+8:72>(0'1+8)2“[82“‘2‘]}-

Let us suppose that for a suitable ¢ =0 f(s) is regular in the domain s€ D(s), and
J(s+iy) is also regular in s¢€ D(g), except for the point s=6,.

Let us fix this value of e.

The function f(s) and f(s + iy) are bounded on C,(g) U C,(¢). The boundedness
on C,(g) follows from the finiteness of the length of C,(¢), and from C,(g) < D(g).
The boundedness on C,(¢) follows from the absolute convergence of (2.1) on

g = Oq.
Let
29210 M= max [0l M= max [fs+ip).

From these conditions we obtain the following

THEOREM. For T=c¢, we have

A
(2. 11) 12 02 (log Xyt
. A(x)
(.12) r 2 i log T %
- where

] 0.2 )
(2.13) % = [0—:+V(@—:) —1],
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ON COMPARATIVE PRIME NUMBER THEORY 381

and 6 =0, ¢, >0 are suitable constants. They are numerically calculable functions
of 0;,0,,¢8, M, M,,y and of the coefficients of P(x).

3. Lemmas. For the proof of Theorem we need the following lemmas.

LemMa 1. Let © be a real number and

oo

. log? x
3. 1) 1(%) = 1f e, [——zr log x— -2 ]dA(x).
Then the relation
”/1; Gr+E+ico .
(.2) 10 = -~ [ fov+inye, (wu) dw
T 61+e—ic

holds by means of (2. 1).

For the proof see K. PRACHAR [1], p. 381. In the PRACHAR’s book is proved
only the case A(x)= 2 a,, but it is easily seen, that in the general case it is also true.

n=Xx

LeMMA 2. If O<fB=1 and u— =, then

3.3) i%fxﬂ‘llogx-el (— k’f: x] dx = 2V mufe,(B2u)+O(1).
1

Lemma 3. If O<a <8, log y=2u(8— V0% —a2), log z=2u(0 + V02 — a2), then
we get

1 f _ log? x _1
(3.4 Elfx" llogx-e, [~ oy ]dx < 0(0%2—a2) " Ze,(a%u),
1 log? x _
(3.5) i;f x0-1log x-e, [— fu ]dx < 2000% —u?) T, (w2u),
3.6) ! fo lel[ )d < (02— a?) e, (a2u).

For the proofs of Lemmas 2 and 3 see K. A. Ropossky [1].

4. Proof of the Theorem. First we prove that

w 10 = ofpmtier.- 3]

2
4.2) I(y) = 2Vun &eéf(w'f‘i?’o)ﬁ(wzu)*‘o [MzV;ﬁ [[02“";‘] “)] .

Applying the representation (3. 2) at =0, and transforming the way of integration
to C,UC, (the value of integral is not changing), so

[I0)| = V% M, fel((az—tz)u)ldw{—i—ZV—% M, fel((az—tz)u) de.
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- 2
By (2.7) and (2.8) the first term is O(Ml Vue, ([02—;) u)), and the second is

2
o[% e ((02——;) u]] From this (4.1) follows. The proof of (4.2) is similar.

Transforming the way of integral in the relation (3.2) at t=7 to C,UC,, we go
through a pole w=#0,. The module of the integral (3.2) on C,UC, is

_ 2
O(MzVuel((Hz-g] u]), and the residue at the point w=40, is the first term of

right hand side of (4. 2).
We take into consideration the residue. By easy calculation

s = e, 03) 3 e, w6

where
(20 )mu(m+n)/2
Gy = >~
2j+m=n m.].
j=0

is a polynomial in u of degree n.
Considering (2. 4), (2.5) we have

k
2Vun Rez e, (W u)f(w+iy) = 2Vume, (6°u) 2 bie; - () = Vue, (03u) Qe ( (),

(26"

whgre Oy (1) is a polynomial of degree (k — 1), with main coefficient 2}z G-

So
@.3) )| = c3uFe, (B3u),
if u=c,. The choice of ¢; depends only on 6,,6,,¢ ¢,, M,.

5. After these preliminaries we begin the proof. Let us introduce the following
notations:

(.1) logy = 2u(0; — V03— 63);
(5.2 logz = 2u(0, + V02 —63).

Let u so large that logy=1. Let § >0 be a constant, which we choose later,
and let

.3) B, (x) = A() £ 6 (log x)~1- %2,

Suppose now that at least one of the following inequalities

(5.9—(5.5 min B, (x) =0, max B.(x)=0
y=x=z ysx=z

is satisfied. We will show that this assumption contradicts (4. I) and (4. 4). Hence
our theorem follows immediately.
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From (3. 1) by partial integration

_ F A (. logx . logsz
(5.6) I(T)—f/—)c—[lr+~2u—~]el[ it log x — e dx.

Let K(7), Ky(1), K5(z) the parts of (5. 6) on the intervals [1, yl, [y, 2], [z, <)

Applying (5. 4) or (5. 5) we have

- ‘Bo(¥) . logx log? x
.7 1K, (z)| = szr+ e |- dx +
log x log? x
+5/x92 t (log x)¥~1 it + 2g [— f ]dx——R1+R2

From (4. 3) it follows that

A(x) 1og x1 [ log? x)
(5.8) f e[+ R
Using the inequahty
. logx Iogx 2u log x
it + l_l | + [m-]ogy 1]»—2~«c6(m+1)
we obtain from (5. 8) that
5.9 R, =c¢g(lt]| + DK,0)+ R,

Further by (2. 2) and (3. 4), (3. 6) it follows

(5.10) R, = dcg(|t]+ 1) (log z)+-1 -%fx"z—l logx-e, [_ lof: x] dr <
< e, (7] + 1) "2 e, (B3u).
From (5. 7), (5.8), (5.9), (5.10) we obtain that
(5. 11) |Ky(2)] = co(le] + 1) Ky(0) +26¢,(Jt| + D2 e,(830).
Further, from (2. 2), (3. 4), (3. 6) it follows

log x

+2u

(5.12) K@= [ lﬁi_x)_l it

2
e, [— 10§u x] dx =

= ¢(|t] +20,)(03 — 63 )_7e1(9 u) = cg(|t]+ 1)e, (B34)
and similarly, from (2. 2) and (3. 5) we get

¢.13) |Ka()| =co(lz] + 1) e, (630).

383
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384 1. KATAI

Now taking into account that I(t) =K, (1) + K,(t) + K;5(7), from the inequalities
(5. 7)—(5..13) it follows that

(5. 14) @)= ey0le] + 1) {10) + 562 ey(03u) + €,(031)).

Now choose 7=y and compare (5. 14) with (4. 1) and (4. 3). So, from (5. 14) the
inequality

2
c3uk~%e1(9§u) = cio(l[+1) {O[Mlﬁﬁ [(92‘"3] u]+5uk—%e1(0§u)+e'1(9§u)}

follows for u=c,. But this is not true, if d<c; and u=c¢;;. So the inequalities
(5. 4), (5. 5) cannot be satisfied if § <c5, #=>c,;. Letusnowtake y=T, so z=T%
(see (2. 13)) and the Theorem is proved.

6. Number-theoretical applications. We mention now some corollaries of
our theorem.
6.1. On the Moebius-function. Let

M(x) = 2 u(n),

n=x

where u(n) is the Moebius function. Apply the Theorem with 0, =1, 0, = 1,
fls) = () M(x)=A(x), 0=0¢, 0o =%+1y0, Yo=14, 13... where g, is a simple

root of {(s). It is well known that in the domain 0 <o <1, 0<¢<20 the function
{(c +it) has no other root. Thus the conditions of our Theorem are satisfied and
the following assertion holds.

THEOREM 1. If T=c,, then

. -1
max x 2M(x)>(3 min_ x 2M(x) = -9,
T=x=T* T=x=T*

where x=(2+ V3)?, and ¢, =0, 6 =0 are explicitely calculable numerical constants.

This theorem can be found in the author’s paper [4], too. With similar questions
deals Mr. KNAPOWSKI in his papers [1], [2], [3], and the author in [3], [4].
 6.2. On the k-free numbers. Let

{1, if »n is k-free
0(n) = 0 otherwise,

P k (x) Rk (.X) C[( ll) n;xv k ( ) C[EC 13)

It is well known that P(x)=O(x'/¥). Applying the Theorem with

1
1, ) e v
01“%5 02"‘”—‘9 f(S)— C(kS) C(k) 2_—’13“—;

AR = P(x), e=2°
we obtain the following
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ON COMPARATIVE PRIME NUMBER THEORY 385

THEOREM 2. If T=d,, then
1 1

P(x)-x % =§; in ox o= —
T W(x)-x =0 T£§T*Pk(x) =0

where » =(2+ V3)?, and 8, >0, d, >0 are constants, which are explicitely calculable
Junctions of k.

This theorem can be found in author’s paper [4].
6. 3. Prof. GELFOND raised the problem to extend our investigations for

M(x, k1) = ; u(n),

=X
n=I(modk)

M(x, x, k) = 2 p(m)x(n),

nEx

and for

if x is a real character mod k. It seems to be difficult to answer these questions,
because we do not know much on the real root of L(s, y) in the critical strip. We
hope to return to these questions latet.

We are dealing with the case k=4 only.

THEOREM 3. [f T =c, then
-1 . -1
6.3.1) Jmax  x IM(x,4,0) = 6, Lmin x ZM(x,4,]) = -9,
1 1
-2 = { -2z -
6.3.2) Lmax x M(x, x) = 0, L x IM(x, ) = -9,

where =2+ V3)*,I=1 or 3 mod 4, and y is the non-principal character mod 4,
¢, and & are calculable numerical constants.

For the proof of the inequalities (6. 3. 1) we apply the Theorem with

1 1 x() _ 1 U
f(s)_ 2[L(S,XO)+L(S,X) s 01—19 02'“ 2, Q_Ql_ 2+l yl’
y, =6,020... where g, is a simple root of L(s, x). It is known, that in the domain
0<o<1,0=¢=10 the function has no other root, and in this domain L(s, ¥o)
is non-vanishing, (See KNAPOWSKI—TURAN [3], p. 254).

For the proof of (6. 3. 2) let

1 1
f(S)—— L(S,ECT’ 01——1, 02“5) 2 =01
6. 4. An other interesting question is the oscillatorious behavior of

Mo(x) = Zﬁ’(/ln_)

n=x

From the prime number theorem it follows My(x)=o0(1), if x ~e<o, and from the
quoted theorem of Landau we obtain Mo(x):Qi(x“%). We prove the following
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THEOREM 4. If T=>c, then

Nl'—‘

max My(x)-x

T=x=T7T%

1
= i P X2 o= —
= o, Tg,}c;nTxMO(x) xZ = -9,

where »=(2+ V§)2, ¢; >0, >0 are explicitely calculable absolute constants.

PRrROOF. Let

. My () i1
f(s):lf dxMo(x)--f o dx = DT

9,=1,0,=1%, 0=0,. The conditions of our Theorem are satisfied.
6.5. On a formula of Ramanujan. Let

s® = 5[],

A(x) = xMy(x),

n

be the so-called Ramanujan-formula. HARDY and LitTLEwWO0OD [1] proved that the

estimation S(ﬂ)=0([3_%+a) is equivalent with the Riemann-conjecture. W. STAs
[1], [2], [3] considered the Q-properties of this sum assuming the Riemann-hypothesis
and other conjectures. The author dealt with similar questions in [2}, [6]. We prove

THEOREM 5. If T=c, then

max fES(P) =5, min BES(B) <5,

T=p=T*

where x=(2+ !/5)2, 0=>0,c¢,=>0 are explicitely calculable numerical constants.

ProoOF. It is known that

TG-9
Sy i | )ﬂ2 894 @-o.

From this and by the Mellin-formula we obtain

[ ooy S(VP) r'(}-s)
J o= =

Using the prime-number theorem in the form 2 a

(n)

=0, we have

S 1) B)
S(h) = Zﬂr{el [-~[;] ]—1} =0y if 0=p=1
Thus the function ¢(s) defined by

o) = [ - S(VD
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ON COMPARATIVE PRIME NUMBER THEORY 387

is regular and ¢(s)= O(I %_l] on the halfplane ¢<3. By partial integration

2 [ g alphsm = o[ T oo 4500
Let us now apply our Theorem, choosing f(s)=h(s), 0,=%,0,=1, g=92—°_

Hence the theorem follows.
6. 6. On a theorem of M. Riesz. Let

. (— 1)+t xk
7 = 2 G-1ITED

M. Riesz proved [1] that the estimation (x)=0(x%”) and the Riemann-con-
jecture are equivalent.
Using similar arguments as in § 6. 5, we can prove the following

THEOREM 6. If T=>c, then

max J(x)+x %>(5, TsmxiSnT”f(x)-x_%<—5

T=x=T*

where % =(2+V3)?, ¢; >0, =0 are explicitely calculable numerical constants.

6.7 Q estimations for the Moebius-function in Abel-sense. Let

< n
mx) = 2 k(mey [—;].
The following theorem holds.
THEOREM 7. If T=>c, then

T=x=T*

max  m(x).x -t d, T;nisnT”m(x)-x_% <=9

where x=(2+V3)%, ¢, =0, 6=0 are calculable absolute constants.

ProoOF. Let

f5) = [ xsdm(x).

Hence by partial integration

oo i
—5~ —_ l S - =
f(s)—m(l)+s1fm(x)x ‘dx_-m(l)—l—sofm[y]y tdy

= myts [m{ 100,
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co

where ¢(s) = f m[;l] »*~1dy is an integral function. Using the relation
1

[yt Zuwe-ma = 18
oo M ®)

we may apply our Theorem choosing

AG) = m(), S =5 L HmD =0, 6 =1 6=7, ¢=0o

6.8. On the k-free numbers in Abel-sense. Let

W) = 2 [Q"(”) C(k)] [ %]-

(The definition of g¢,(n) see in §6. 2)
With similar arguments can be seen the following

THEOREM 8. If T=>d, then

1 1

T2k ; ox 2k — _
Jmax T,()x % =5, min ()-x % <—5

where x=(2+V3)?, 6,0, d, >0 are constants, being explicitely calculable functions
of k.

6.9. On prime-numbers in different arithmetical progressions. Let us denote

vk )= 2 AW, ¥x) =2 A@),

n=x
n= l(rnodk)

n(x, k, = 2 1, n(x) =21,

P=EX P=x
p=Il(modk)

where p denotes prime-numbers, A(n) the Mangoldt’s function. S. KNAPOWSKI
and P. TURAN treated sistematically the oscillation of ¥(x, k, /) —y(x, k, I,) and
of n(x, k, I} —n(x, k, [,) in the series of their papers entitled ,,Comparative prime-
number theory”.

We can prove the following

THEOREM 9. For T'=c, and for all pairs 1, , 1,, I, 21, (mod 8), (I,/,, k) =1 we have
Jmax (v, 8, 1) —(x, 8, L}x"% = 6,
and if 1121, 1, Z1 then

,max {n(x, 8,1 )—m(x,38, ZZ)}x_%logx > 6,

where x =(2 + V§)2, 0=0, ¢, =0 are explicitely calculable constants.
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The corresponding results concerning this and the following theorem of S.
Kn~APowsKl and P. TURAN are better in almost every respect (see 2}, p. 31, (1. 2);
[3], p. 253, (1. 9)). Let

sk, = 3  Ame, [— g] .

n=I(modk)

THEOREM 10. For all T=c, and for all pairs 1, 1,; 1, £, (mod 8), (I, k)=
=(l,, k)=1 we have

ymax {o(x.8,1)—=o(x, 8, }x "% = o,

where x=(2+ V§)2, 0=>0, ¢; =0 are calculable constants.

7. Applications to ineffective theorems. In what follows we quote some £-
theorems, which correspond to the analog theorem of the preceding paragraph.
Let 6 be the upper limit of the real part of the roots of {(s), i.e. in notation

0 = sup ,Reg.
=0
The following theorem holds.

TaeECREM 11. For arbitrary &, >0, ¢, >0 we have

max M(x)-x~0*a = 1, min  M(x)-x"%%2 < —1,
Taix=T1te T=x=Tl+62

where T =d. (d is a suitable constant. We cannot calculate d.)

ProoF. a) If 0=4, then using the estimation

MGl < dy(e3)x2"™

(see E. C. TitcHMARSH [1]) we apply the Theorem with g =go=%+iy,, k=1, 0,=
=4%+4g;,0,=%. Thus

2 S
® = 0, l/[(b) —1 < 1426, +V2;+4e2 < 1+¢,
6, 6,
if &3 is small enough, and so the theorem is proved.

b) The proof of the case #=1 is similar.

Let N(o, T) represent the number of zeros g=f +iy of the {-function that
satisfy o = ffand 0=y =T. According to a theorem of A. SELBERG (E. C. TITCHMARSH
[1}, p. 204) we have

N(o, T)=0(T"log T)

uniformly for 1 =o¢=1, where r=1-4%(¢—1%). Applying this with e =0—¢, we
can guarantee the existence of such a {-root ¢, = f3, +iy,, for which in the domain
It -y <2, o=f,, the {-function does not vanish. Since {(s)=0 in 0<s<1, we
can guarantee the conditions of the Theorem.

We can deduce similarly the following theorems.
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THEOREM 12. For arbitrary but fixed &, >0, £, >0

max =~ m(x). x> 1, min  m(x)-x"0* < — 1,
Tsx=Tite2 T=x=Tl+é2
max S(f)-pr-9*e > 1, min  m(x)-x"0tn < 1,
T=p=Tl+é2 Tsx=Tl+e2
max  Mgy(x)+xt-0+a > 1, min  My(x)x1-0+e < — 1,
T=xsTlte2 T=x=Tl+e
max J(x)=>1 min  J(x) <-—1
T=x=Tlte2 () =1, T=x=Tl+e2 (x) = ?

if T is large enough.

Finally we draw up a conditional result as a consequence of our Theorem.
Let /, 21, (mod k); I, I, be coprime to &, and

160 == 2 G -1 5 6.0,

where the x-’s denote multiplicative characters mod k.

Let us denote by 6* the upper limit of real parts of the poles of f(s). We proved
in [4], that @+ =1. (This assertion implicitely: has been stated and was proved in
KNaPOWSKI—TURAN’s paper [3] p. 243 carlier.) Now suppose, that f(s) is regular
in 0 <s<1. (This condition was quoted by KNarowski and TURAN as Haselgrove’s-
condition. See their paper [2], p. 51.)

THEOREM 13. If f(s) is regular in the interval O <s<1 then for arbitrary but
fixed ¢,>0, e, >0 :

max (l// (x’ k’ ll)_ W(x, k: 12)))(‘.—0*-'—8l = 13

T=x=rl1e2

max (G'(X, k, ll)——O'(x, k, lz))x—0*+51 - 1’
Ts=x=Tlte

when T is large enough.
8. The number of sign-changes. Let us denote by N(4, T’) the number of

sign-changes of A(x) in the interval 1 =x = T. From our Theorem follows immediately
that for T'>c¢,

loglog T —c,
log x

6 0.)?
=)
Thus the following inequalities hold.
If T=c then
N(M, 1)>o(T), N(M,, T)>o(T), N(S, T)>¢(T), N7, T)>¢(T)
loglog T—c,
210g(2+V3)

N(A4,T) >
holds where

where ¢(T) = . (See Theorems 1, 4, 5, 6.)
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ON COMPARATIVE PRIME NUMBER THEORY 391

Similarly from the Theorems 11, 12 it follows that

o NOLT) _ L N, T) _
T_mloglogT ' loglog T

NmT) 0 NET)

;.mlog ogT = ilogiogr ~
i VST
Tow loglog T

( Received 5 October 1966)
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