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1. Introduction. In the analytical number theory an important direction of 
the investigations is the omega-estimations of number-theoretical functions. The 
first, significant steg was the famous Landau's theorem concerning the Diriehlet- 
series with positive coefficients (E. LANDAU [1]). This theorem asserts that if the 

Dirichlet-series F ( s ) = ~  n~ has nonnegative coefficients, further its convergence- 

abscissa is c~, then ~ is a singular point of F(s). From this theorem easily follows 

that e.g. li---m M(x).x-�89 lirn M(x)'x-�89 M ( x ) =  ~ #(n). In other 
, n ~ X  

words there exists a sequence 0 < x~ < x~ < . . .  < xn < x, < . . . ,  x, ~ oo such that 

M(x;) >x;�89 M(xT)<-xv . But the question concerning the density of the 
values is not answered by this theorem. 

Recently S. KNAPOWSI<I and P. TURAN [1], [2], [3] elaborated a method which 
gives omega-estimations of many number theoretic functions, in more effective 
form. Their proofs were based on the very deep results of Prof. TURIN in the theory 
of diophantine approximation. S. KNAI"OWSKI has dealt with similar questions 
in the papers [1], [2], [3], and W. SXAS in [1], [2], [3]. 

In this paper we shall deal with similar questions. The author in [1] obtained 
some new effective results for number-theoretic functions without any conjectures. 
In the proofs of these theorems an idea of RODOSSKY [1] is important. These results 
were published partially in author's paper [4]. The aim of this paper is to obtain 
a more general theorem. Our earlier theorems will be direct consequences of this 
theorem. 

Throughout this paper c, ct ,  e2, ... will denote explicitely calculable numerical 
constants not necessarily the same at every oecurence. Further we use the notation 
e,(x) =e x. 

Acknowledgement. I am very indebted to Prof. P. TUR~S and Mr. J. MOGYOR6DI 
for their important remarks. 

2. A theorem on Diriehlet integrals. Let 

f dA(x) (s = a+it) (2. 1) f(s)  = x* 
1 

and let the integral be absolutely convergent on the halfplane a > a t .  Let us suppose 
that A(x) is real and that 
(2.2) IA(x)l~_cxx ~ if x~_l,  
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where ca is a constant. Let, furtherf(s) be analitically continuable on the halfplane 
a:~02-6~ ,  where 3a>O is a suitable constant, 0 < 0 2 < 0  a. Let 

(2. 3) 0 = 02 + i7 (~ ~ O) 

a pole of multiplicity k off(s) .  
Let the Laurent-expansion over s =  ~ of f ( s )  be of the form 

(2.4) f (s )  = P((s - ~)- l) +g(s), 
where 
(2.5) P(x)=bax + b2x2 + ... + bkx k (bk 7~O), 

is a polynomial of degree k, and g(s) is a function, which is regular in the neigh- 
bourhood of s- -0 .  

Let D(Q denote the set of s---a + it, which satisfy the inequalities 0 -2 -  t z >  
>(02 -5 )  2, 02 -e<=a~aa +~ i.e. in notation 

(2. 6) D(e)= {s; a 2 - t  2 >(02 _Q2, 02-e<=a<=al +e}. 

Now we define the curves Ca(Q, C2(e) as 

(2. 7) C1(6 ) =  ; a 2 - t  2 =  02 - e , - ~ a < = a l + e  , 

( 2 . 8 )  C 2 ( e )  --- ; o" = 0-i + e, t 2  > (0"1 -a- e) 2 -  2 -  �9 

Let us suppose that for a suitable e>Of ( s )  is regular in the domain sCD(e), and 
f ( s+iT)  is also regular in sED(e), except for the point s=02.  

Let us fix this value of 5. 
The function f (s)  a n d f ( s +  iy) are bounded on C~(e) U C2(e). The boundedness 

on Ca(z) follows from the finiteness of the length of Ca(z), and from Cl(e)cD(e).  
The boundedness on C2(e) follows from the absolute convergence of (2. 1) on 
0 " > 0 "  1 . 

Let 

(2.9)--(2.10) M I =  max If(s)l, M 2 =  max If(s+iv)l. 
sEC~UC2 sEC1uC2 

From these conditions we obtain the following 

THEOREM. For T > c2 we have 

A (x) 
(2. 11) max > 6, 

r~_x~_T~ x ~ (log X) k- a 

m i n  A ( x ) < _ ,~ , (2. 12) T~x~_r" X02(1og X) k- 1 
where 

(2.13) (01+ /(0a/2 ]2 
=t02 I t ~ ) - l .  , 

Acta Mathematica Academiae Scientiarum Hungaricae rS, 1967 



ON COMPARATIVE PRIME NUMBER THEORY 381 

(3.1) 

Then the relation 

and 6 >0, c2 >0  are suitable constants. They are numerically calculable functions 
of Of, 02, ~, M1, Mz, 7 and of the coefficients of P(x). 

3. Lemmas. For the proof of Theorem we need the following lemmas. 

LEMMA l. Let z be a real number and 

I(z) = e 1 - iz log x -  ~ dA (x). 
1 

�9 / -  ~ + E + i ~  

(3.2) I(O = i!'u f f(w+iz)el(w2u) dw 
V ~  ~ i + ~ - - i ~  

holds by means of (2. 1). 

For the proof see K. PRACHAR [1], p. 381. In the PRACHAR'S book is proved 
only the ease A(x) = ~ a,, but it is easily seen, that in the general ease it is also true. 

/z~x 

LEMMA 2. I f  0 < fl <= 1 and u ~ 0% then 

, 2u-- xP- �9 e 1 ~ - ~  j (3.3) f logx = 2]/~ufleI(fl2u)+ O(1). 

LE~aMA 3. I f  0<0~<0, log y=2u(O-- ( ~ - 2 ~ ) ,  Iogz=Zu(O + j /~_~2) ,  then 
we get 

y 

1 / xO_l log x. e 1 / l~ x] dx < 0(0 2 --~2)-�89 1 (3.4) 2~ ~-- ~ (~2u), 

[ / (3.5) 2 u u / x  -1 logx "el ( - - 4 u - u  J dx < 20(02 -ez)- �89 ), 

l /  [_log2x / 
(3.6) 2u x~ ( 4u ]dx < (O2-~2)-�89 

For the proofs of Lemmas 2 and 3 see K. A. RODOSSKY [1]. 

4. Proof of the Theorem. First we prove that 

(4.1) I ( 0 ) =  O(M1]/uel[(02 -~] u)}, 

g 2 

Applying the representation (3.2) at z = 0, and transforming the way of integration 
to C~ U C2 (the value of integral is not changing), so 

cx C2 
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By (2. 7) and (2. 8) the first term is 0 M 1 I/ue, Oz - -~  u , and the second is 

O el 02-T2- u . From this (4. 1) follows. The proof of (4.2) is similar. 

Transforming the way of integral in the relation (3.2) at z = 7 to C1 U C2, we go 
through a pole w=02 .  The module of  the integral (3.2) on C~U6'2 is 

( ((0 0 M2~/ue ~ 2 -  5 u , and the residue at the point w=O 2 is the first term of 

right hand side of (4. 2). 
We take into consideration the residue. By easy calculation 

wllere 

ex (w 2 u) = el (0 2 u) 2 c. (u) (w - Oz)", 
n=O 

c.(.) = Z 
2 j + m = n  

.i~_ O 

is a poJynomial in u of degree n, 

Considering (2. 4), (2. 5) we have 

(202)mu(m+n) /2  

re!j! 

21/u-~ Rez e~ (w 2 u)f(w + i?) = 21/u-~ e~ (02 u) ~ ,  by e s._x (u) = 1/-uel (02 u)Qk-1 (u), 
w=O2 j =  1 

[2121 "~k- 1 
where Qk_ l(u) is a polynomial of degree (k - 1), with main coefficient 2 ~ ~'YP 

( k -  1)! ' 
So 

(4.3) [I(~)l > %uk-�89 (02u), 

if u > c4. The choice of % depends only on 0~, 02, 8, el,  M2. 

5. After these preliminaries we begin the proof. Let us introduce the following 
aotations: 

= 1/ol  (5. 1) logy 2u(01-  ~ �9 

/ 2  2 (5.2) log z = 2u(Ot + | ~ .  

Let u so large that l o g y > l .  Let 6 > 0  be a constant, which we choose later, 
and let 
(5. 3) B+(x) = A(x) + 8 (log x)k- ~" X% 

Suppose now that at least one of the following inequalities 

(5. 4)--(5.5) min B+ (x) ~ 0, max B_ (x) ~ 0 
y ~ x ~ z  y~--x~z 

is satisfied. We will show that this assumption contradicts (4. 1) and (4. 4). Hence 
our theorem follows immediately. 
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From (3.1) by partial integration 

; ~ X ) ( . ,  log x) [-- iz log x l~ (5.6) l(t) = I l l  5- 2U-U J e l  - -  4--Z 
1 

Le t  KI(z), K2(t), K3(t) the parts of (5. 6) on the intervals [1, y], [y, z], [z, ~). 
Applying (5.4) or (5. 5) we have 

(5.7) [Kz(t)I <: i t + ~  el I- '4u--u J J 

z . log x [ l oCx}  
+3 f xo2-, (logx) k-1 lz+~-u- u el t - - ~ j d x  : RI+R2.  

Y 

From (4. 3) it follows that 

(5.8) RI<= / ~ i t + ~ - u X )  e'[-l~ 
( 4u ) r +Rx~ 

Using the inequality 

i t+  l~ x l ~ 1 7 6  
<= I~1+ 2 ~  --< Itl'l-Ugy + l  -2~- < c 6 ( I t l + l ) ,  

we obtain from (5. 8) that 
(5. 9) R l ~ c6(tz[ + 1) K2(O) + R2. 

Further by (2.2) and (3.4), (3.6) it follows 

z [ log2x ) 
1 f xO2_l.logx.e~ (5. 10) R2 ~ 6c6(It[ + 1)(l~ '2uy [---~uJ dx < 

< c5c7(]z ] + 1)uk-�89 
From (5. 7), (5.8), (5. 9), (5. 10) we obtain that 

(5. 11) IK2(t)I ~ c6(]z[ + 1)K2(0)+ 26c7(tt] + 1)uk-�89 

Further, from (2. 2), (3.4), (3.6) it follows 

r 1 I log2x] (5. 12) IKI(z)[ <= f [A(x)] iz+ logx et dx 
1 x 2u t - - - X d - u  ) - 

<= 02) 7el(O~u) ~ cs(Itl + 1)e~(O~u), c , ( I t l + e 0 , ) ( 0 ~ -  _1 

and similarly, from (2. 2) and (3.5) we get 

(5.13) IK3(z) I ~ Cg(lV] + 1)ei(OZ2u), 
0 Acta Mathematica Academlae Scientlarum Hungarlcae I8, 1967 
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N o w  taking into account  tha t  I(z) = Kl(z  ) + Kz(z) + Ka(z), f rom the inequalities 
(5. 7)--(5.  13) it follows that  

_ l  
(5.14) [I(z)[ <= Clo(IZ I _s_ 1) { I(0)l + 6u k 2 el(0Z2 u) + el(0 ~ u)}. 

N o w  choose z = ~ and compare  (5.14) with (4. 1) and (4.3).  So, f rom (5.14) the 
inequality 

{ /  (( 1 } 
c~u 2el(O~u) <= clo(1~ - 1 )  O Mtl/~el Oa ~ u -r~uk-~el(O~u)+ei(O~u) 

follows for  u > c 4 .  But this is not  true, i f  6 < c  3 and u > c  11. So the inequalities 
(5.4),  (5 .5)  cannot  be satisfied if 6 < Ca, u > c l  1. Let  us now take y = T, so z = T ~ 
(see (2. 13)) and the Theorem is proved. 

6. Number-theoretieal applieafions, We ment ion  now some corollaries of  
our  theorem. 

6.1. On the Moebius-function. Let 

M(x) -= • #(n), 
R~X 

where p(n) is the Moebius  function. Apply  the Theo rem with 01 = 1, 02 = �89 
1 

f(s) = ~ ) ,  M(x)=A(x), 0 = 0 o ,  0 o - � 8 9  70 -=14 , 13... where 0o is a simple 

roo t  of  ~(s). I t  is well known tha t  in the domain  0 < a < 1, 0 < t < 20 the function 
~(a +it) has no other  root.  Thus  the condit ions of  our  Theorem are satisfied and 
the following assertion holds. 

THEOREM 1. I f  T>c~, then 
1 

max  x-�89 6, min  x-~M(x)<= - 6 ,  
T ~ x ~ T  ~ T ~ x ~ T  ~ 

where ~ = ( 2 +  ]/~)2, and c~ > 0 ,  6 > 0  are explicitely calculable numerical constants. 

This theorem can be found  in the author ' s  paper  [4], too. With  similar questions 
deals Mr. KNAPOWSKI in his papers  [1], [2], [3], and the author  in [3], [4]. 

6. 2. On the k-free numbers. Let 

ok(n) = { 
1, if  n is k-free 

0 otherwise, 

Ix] _ ~ 0 k ( n )  [X] 
P~(x) = Rk(x) ~(k) . ~  -~(k--)" 

I t  is well known that  Pk(x)= O(xl/k). Applying  the Theorem with 

1 1 r r 
01 = - k '  Oz =-2-k' f ( s ) =  = (ks) ~ (k) 

o k ( n ) - - -  

n s 

1 
r 

we obtain the following 

~ 0  A(x) = Pk(x), o = 
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THEOREM 2. I f  T > d k, then 
1 

m a x  P k ( X )  " X 2 k  z:~- (~ ~- k~ 
T ~ _ x ~ _ T  ~ 

1 

min Pk(x ) . x  2k <=-6k 
T ~ x ~ T  ~ 

where ~ =(2  + 1/3) 2, and 6 k >0 ,  d k > 0  are constants, which are explicitely calculable 
functions~ of k. 

This theorem can be found in author's paper [4]. 
6. 3. Prof. GEL~OND raised the problem to extend our investigations for 

M ( x , k , l ) =  ~ p(n), 
?I~X 

n ~ l ( m o d k )  

and for 
M(x,  )6 k) = ~ p(n)z(n), 

n _~_~ x 

i f  Z is a real character mod k. It seems to be difficult to answer these questions, 
because we do not  know much on the real root of L(s, Z) in the critical strip. We 
hope to return to these questions later. 

We are dealing with the case k = 4 only. 

THEOREM 3. I f  T>c~ then 

(6.3.1)  max x ~M(x,  4,/)  _-> 6, min x - Z M ( x ,  4, l) ~ -c5, 
T ~ _ x ~ T  ~ T ~ x ~ T  ~ 

1 1 
(6.3.2)  max x - Z M ( x ,  X) >= 6, m i n x  ZM(x,  X) <= - 8, 

T ~ x ~ T  x T ~ _ x ~ _ T  ~ 

where u = (2 + r 1-~ 1 or 3 mod 4, and ;~ is the non-principal character mod 4, 
cl and 6 are calculable numerical constants. 

For the proof  of the inequalities (6. 3.1) we apply the Theorem with 

1 + 01 = 1, 02 = ~ ~ = Pl = + i ' 7 1  
f (s )  = ~ I L(s, Zo) L(s, Z) ~' ' -2 ' 

71 = 6,020... where ~1 is a simple root of L(s, )0. It is known, that in the domain 
0 < ~ r < l ,  0 < - t ~ 1 0  the function has no other root, and in this domain L(s, Zo) 
is non-vanishing. (See KNAPOWSKI--TURXN [3], p. 254). 

For  the proof  of (6. 3.2) let 

1 1 
f ( s ) -  L ( s , z ) '  01 = 1, 02 = ~ ,  ~ = 41. 

6. 4. An other interesting question is the oscillatorious behavior of 

Mo (x) - - -  (n) 
n ~ x  n 

From the prime number theorem it follows Mo(x ) = o(l), if x--* ~,  and from the 
quoted theorem of Landau we obtain Mo(x)= f2+(x-2t). We prove the following 
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THEOREM 4. I f  T > c t  then 

max Mo (x). x �89 => 5, 
T ~ x ~ _ T  ~ 

! 

rain M o ( X ) ' X  2 ~- -c~ ,  
T ~ x ~  T ~e 

where n = ( 2 +  1/~)2, c i > 0  ' 6 > 0  are explicitely calculable absoh~te constants. 

PROOf. Let 

f M o ( x )  i l 
f ( s )  = a x -~  dxMo (x) = x~ dx - (s- -  1)' ((s--); A (x) = x M o  (x), 

1 1 

01 = 1, 02 =�89 Q = Oo. The conditions of our Theorem are satisfied. 
6. 5. On a formula o f  Ramanujan. Let 

S(fl) = /_~ ~ e t  - 
n = l  

be the so-called Ramanujan-formula. HARDY and LITTLEWOOD [1] proved that the 

estimation S(fl)= O(f1-�89 is equivalent with the Riemann-conjecture. W. STAS 
[1], [2], [3] considered the O-properties of this sum assuming the Riemann-hypothesis 
and other conjectures. The author dealt with similar questions in [2], [6]. We prove 

THEOREM 5. I f  T > c l  then 

1 fl�89 max fl~S(fl) > 6, min < - 5 ,  
T ~ f l ~ _ T  ~ T ~ l J ~ _ T ~  

where ~ ( 2 §  2, 6 > 0 ,  c 1 > 0  are explicitely calculable numerical constants. 

PROOF. It is known that 

f l s ( f l )  = - -  j ~ 

1 fl~ r ( � 8 9  
2zri ((2s) 

(�89 
From this and by the Mellin-formula we obtain 

- -  d s  0:1 > 0 ) .  

eo 

f ,-s dB- r(�89 
o ]/fl ~(2s) 

Using the prime-number theorem in the form w #(n) =0,  we have 
n 

S(fl) = el -- - 1  = 0 ( 8  2 ) if O ~ f l ~  1. 
n = l  F/ 

Thus the function q)(s) defined by 
1 

 o(s) = / s(gD 
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o/ ')  is regular and ~o(s)= ~ on the halfplane a < ~ .  By partial integration 

f r (�89 - s) h(s) d~j j fl-" d(fl�89 S(1/-fl)) = s ,q~(s) +S(1). 
1 r 

~o Let us now apply our Theorem, choosing f ( s )=h(s ) ,  02=�88 01=�89 q = ~ - .  

Hence the theorem follows. 
6. 6. On a theorem of M. Riesz. Let 

3 - ( x )  = 
(--1)k+lx k 

( k -  1)! ~(2k) " 

M. RXESZ proved [1] that the estimation J ( x ) = O ( x  �89 and the Riemann-con- 
jecture are equivalent. 

Using similar arguments as in w 6: 5, we can prove the following 

THEOREM 6. I f  T > c l  then 

max JT(x).x-�89 > 6, min gT(x).x -�89 < -~5 
T ~ x ~ T  x T ~ x ~ T  x 

where ~=(2+1/3)  2, c l > 0 , 6 > 0  are explicitely calculable numerical constants. 

6. 7 f2 estimations for the Moebius-function in Abel-sense. Let 

n I 
The following theorem holds. 

THEOREM 7. I f  T > c l  then 

max m(x). x-�89 > 6, min re(x), x -  �89 < - 6 
T ~ x ~ T  x T ~ x ~ _ T  x 

where, ~ =(2 + V3) 2, c~ >0,  6 > 0  are calculable absolute constants. 

PROOF. Let 

Hence by partial integration 

oz 

f s) = f x "  dm(x). 

r fl / 
./~s)-'v ~ = m(1)+s  fd m(x)x  - s - '  dx = m(1)+s  3 m -- y~-'  dy = 

1 o ( Y )  

0 
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where ~o (s) = m Y dy is an integral function. Using the relation 

y~-i Z p(n) ei ( -ny )  dy - _C(s) 
o . = 1 ~ ( s )  

we may apply our Theorem choosing 

r ( s )  . 1 
A(x) l Y I ( X ) ~  f (s)  = S~(S~+m(l ) -~o(s ) ,  0 i = 1, 02 = ~ ,  0 = Oo. 

6. 8. On the k-free numbers in Abel-sense. Let 

e I - - - -  . 
n = l  

(The definition of ek(n) see in w 6.2.) 
With similar arguments can be seen the following 

THEOREM 8. I f  T >  dk then 

1 1 

max *k(X)X 2k> 6k, rain % ( x ) . x  2k <--6k 
T ~ x < = T  ~ T <~x<=T ~ 

where n = (2 + l/3) 2, 6 k >0,  dk > 0  are constants, being explicitely calculable functions 
o f k .  

6. 9. On prime-numbers in different arithmetical progressions. Let us denote 

~b(x, k, l) = Z A(n), 
n ~ x  

n ~ l ( rnod  k )  

7r(x, k, l) = ~ 1, 
p ~ x  

p =- l ( m o d  k ) 

where p denotes prime-numbers, A(n)the 

(x) = • A (n), 
n ~ x  

n(x) = Z 1, 
p ~ x  

Mangoldt's function. S. KNAPOWSKI 
and P. TURIN treated sistematically the oscillation of O(x, k, l l ) -  O(x, k,/2) and 
of re(x, k, ll) -re(x, k,/2) in the series of their papers entitled ,,Comparative prime- 
number theory". 

We can prove the following 

THEOREM 9. For T>ca and for allpairs ll ,  12, 11 ~ 12 (mod 8), (1112, k) = 1 we have 

max {if(x, 8, 1 0 - f f ( x ,  8, 12)}x-�89 > 6, 
T < = x ~ T  ~ 

and if  ll ~ 1, 12 ~ 1 then 
1 

max {n(x, 8, lO-~r(x ,  8, 12)}x-~logx > 6, 
T ~ x ~ T  ~ 

where ~ =(2 + 1/3) z, fi >0,  cl > 0  are explicitely ealctdable constants. 
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The corresponding results concerning this and the following theorem of S. 
KNAeOWSKI and P. TURAN are better in almost every respect (see [2], p. 31, (1.2); 
[3], p. 253, (1.9)). Let 

a ( x , k , l ) =  .---,(modk) ~ '  A ( n ) e * ( ' n ) "  

THEOREM 10. For all T > c ,  and fo r  all pairs l i ,  12, li ~12 (mod 8), (11, k ) =  
= (l z, k) = 1 we have 

max {or(x, 8, l O - a ( x ,  8,/2)}x -�89 > 6, 
T <=x<=T ~ 

where ~ = ( 2 +  1/3) 2, 6 > 0 ,  ci > 0  are calculable constants. 

7. Applications to ineffective theorems. In what follows we quote some f2- 
theorems, which correspond to the analog theorem of the preceding paragraph. 

Let 0 be the upper limit of the real part of the roots of ~(s), i.e. in notation 

O =  sup eReo.  
g(o) = o 

The following theorem holds. 

THEOREtv[ I1. For arbitrary e I >0,  e2 > 0  we have 

max M ( x )  . x -~ > 1, min M ( x ) .  x -~  < - 1 ,  
T ~ I x ~ T  1 +ez T ~ x ~ T  1 +ca 

where T > d .  (d  is a suitable constant. We cannot calculate d.) 

PROOF. a) If  0=�89 then using the estimation 

IM(x)l < g, ( ~ ) x  ~*+ ~ 

(see E. C. TITCHMARSH [1]) we apply the Theorem with ~ = 0o =�89 + i~o, k = 1, 0 t =  
= � 8 9 1 8 9  Thus 

= 02 + - 1  < 1+2e3+ ]/2-~3+4e3 z < l+e2  

if ea is small enough, and so the theorem is proved. 
b) The proof of the case 0 >�89 is similar. 
Let N(a, T) represent the number of zeros 0 =/3 + i7 of the (-function that 

satisfy a ~/3 and 0 <= y <= T. According to a theorem of A. SELBERG (E. C. TITCHMARSH 
[1], p. 204) we have 

N(a, T)  = O ( T  r log T) 

uniformly for �89 =<a <_ 1, where r = 1 - �88  (a - �89  Applying this with a = 0-•2 we 
can guarantee the existence of such a (-root 0i =/3, + i~,, for which in the domain 
] t -711<2,  a > f l l ,  the ~-function does not vanish. Since ( ( s )~0  in 0 < s < l ,  we 
can guarantee the conditions of the Theorem. 

We can deduce similarly the following theorems. 
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390 I. KATAI 

THEOREM 12. For arbitrary but f ixed e 1 > 0 ,  e2 > 0  

max m(x) .  x -~ > 1, rain rn(x), x -~ < - 1 ,  
T ~ x ~ T  I +e2 T~_x<=T 1 +e2 

max S(fi) .ill-o+51 > 1, min m ( x ) . x  -~ < - 1 
T ~ f l ~ T  1 +e2 T ~ x ~ T  1 +52 

max Mo(x) .  x 1-~ > 1, min Mo(x)x  1-~ < -  1, 
T ~ x ~ T  1 +52 T ~ x ~ T  1 +e2 

max J-(x)  > 1, min J-(x) < - 1 ,  
T<=x~T 1 +52 T~x<=T 1 +82 

i f  T is large enough. 

Finally we draw up a conditional result as a consequence of our Theorem. 
Let I 1 ~ l 2 (mod k); l i , / 2  be coprime to k, and 

1 ~ (~(l 0 - ~(12) (s, Z), f ( s ) -  ~o(k) 

where the g-'s denote multiplicative characters rood k. 
Let us denote by 0 f the upper limit of  real parts of the poles off(s) .  We proved 

in [4], that 0* =>�89 (This assertion implicitely has been stated and was proved in 
KNAVOWSKI--TURAN'S paper [3] p. 243 earlier.) Now suppose, that f ( s )  is regular 
in 0 < s  < 1. (This condition was quoted by KNAPOWSKI and TUR.~N as Haselgrove's- 
condition. See their paper [2], p. 51.) 

THEOREM 13. I l l ( s )  is regular in the interval 0 < s <  1 then for arbitrary but 
f ixed e 1 > 0 ,  e2 > 0  

m a x  
T~x<=T 1 +e2 

m a x  
T<=x~Tl+52  

.:hen T is large enough. 

(~(x ,  k, I x ) - I p ( x ,  k, 12))x -~ > 1, 

(a(x,  k, l l ) - ~ ( x ,  k, 12))x -~ +~1 > 1, 

8. The number of sign-changes. Let us denote by N(A, T) the number of  
sign-changes of A(x) in the interval 1 <= x <= T. From our Theorem follows immediately 
that for T :> el 

log log T -  e2 
N(A,  T)  > 

log 
holds where 

0 1  

Thus the following inequalities hold. 
I f  T > c t  then 

N(M, T)>tp (T) ,  N(Mo,  T)>(o(T) ,  N(S, T)>q~(T),  

where 9 ( T )  = log log T -  c2 (See Theorems 1, 4, 5, 6.) 
2 log(2 + ]/3) " 

N ( Y , T ) > ~ ( T )  
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Similar ly  f r o m  the T h e o r e m s  1 I,  12 it  fo l lows tha t  

l im N ( M ,  T )  oo i im  N ( M ~  T )  
§  ' - -  log l o g T  = o %  

l im N ( m ,  T )  N ( ~ ,  T )  
T - ~  log log T 0% Iim --  0% . . . . . . .  log  log T 

r u ( s l  T) tm - - - -  = c o .  
r-2-~o log log T 

(Received 5 October 1966) 
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