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1. ~ebylev announced, as well-known, (see ~eby~ev [1]) in 1853 without 

proof the following assertion. 

If p runs over the odd primes then 

(1.1) lim ]~ ( -  1)tP-~ = - ~ .  
x ~ + O  p 

This assertion can be interpreted in the present terminology that there are 

more primes of the form 4k + 3 than of 4k + 1, in Abel-summation-sense. 

As well known the truth of falsity of this very remarkable assertion is not yet 

decided; the depth of it however was exhibited by Landau (see Landau [-1], 

[-2]) and Hardy-Littlewood (see Hardy-Littlewocd [,1]) who proved it is 

equivalent with the non-vanishing of 

( -  1)" 
L(s)  = ,,=o ~ (2n + 1)~ (s = tr + it) 

1 
for tr > ---~. As it was noted by Hardy and Littlewood 1.c. the same assertion 

holds for ~ ( - 1 )  (P-1)/21ogpe -P~. 
P 

The same result could have been proved by the same reasoning for 

with 

~E e~" logp"  e -px and ~E %e -px 
p > 3  p > 3  

1for  p - l m o d  3 
! 

% = - 1  for p - - - - 1  mod 3 
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resp. for 

with 

~, e~log p ' e  -vx and ]~ e~e -vx 
p>6 p>6 

1 for p = l  mod 6 
t t  

eP = -  1 for p = - I  mod 6. 

These are all moduli k where all p r imes- -wi th  exception of finitely m a n y - -  

are distributed in two residue-classes mod k, i.e. qS(k)= 2. 

It is quite plausible to ask what is the situation with other moduli. The 

next case is the case of  the k's with qS(k) = 4 ; this is realized only for the 

moduli 

(1.2) 

k = 5 with the residue-classes 1,4 and 2,3 

k = 8 with the residue-classes 1 and 3,5,7 

k = 10 with the residue-classes 1,9 and 3,7 

k = 12 with the residue-classes 1 and 5,7,11. 

The residue-classes for each modulus were written in two sets; in the first one 

are the quadratic residues, in the other one the non-residues of  the respective 

modulus. We shall call them R-set resp. N-set for  the sake of  brevity. In the 

cases with ~b(k)= 2 only a comparison of  two residue-classes from different 

sets (one from R, the other from N) was possible. The principal novelty of 

these cases arises from the fact that now also comparison of  residue-classes 

of  the same set is necessary. Since in the cases k = 8 and k = 12 this occurs 

only within the N-set, within the moduli in (1.2) they constitute the simpler 

case and in this note we shall confine ourselves to this case. Moreover it will 

be enough to consider the case k = 8 since from k = 12 everything goes mutatis 

mutandis. 

The application of  the method of  Hardy-Landau-I_ittlewocd shows at 

once that for all /-values among 3,5,7 defining 

1 for p = l  mod 8 
/~() ~__ 

- 1 for p = l  mod 8 
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.d) log p �9 e - p x  --  oO (1.3) lim ]~ % = 
x ~ + O  p 

(1.4) lim E e [ e  p x = _  
x'-" + 0 

hold if and only if the L ( s , x ) - f u n c t i o n s  belonging to mod 8 do not vanish for 

I 
a > -~-. For the new cases, w'hen 11 and 12 are any two different ones from 

the corresponding N-set, i.e. among 3,5,7, the classical theorem of Landau 

would give wi hout any conjectures that the functions 

(1.5) g l ( x )  a ~  ' r ,  ~(t,,12) ,^_ ~p l o s  p �9 e - p x  

P 

with 

(1.6) p0,.!,) = v p  

1 for p ~ 1 1  mod  8 

- 1  for p - - l z  mod 8 

change sign infinitely often when x -~ + 0. Using other ideas we proved (see 

Knapowski-Turfin [1])  that if cx (and later c2,. . .)  is a suitable positive nu- 

merical constan., than (*)for 0 < 6 < cl without any conjectures the inequality 

max E ~l,12)loga P" e - P X  
< x < 6 1 / 3  p 

1 exp ( - 22 log (1/6) 1oga(1/6) 
(1.7) > x/~ log2 (1/6) ] 

(and, what follows automatically by changing 11 and 12 

(*) Wo romark that log v (IriS) stands always for v-times iterated logarithm. 



270 S.  K N A P O W S K I  and P .  T U R . ~ N  

min ~ e (t~'t2) log p �9 e -px 
d~ < x  <d~x/a p 

1 
(1.8) < [ -  22 log (1/~) log3 (1/~) 

e x p  log~ (1/~) ] 

holds. These imply of  course that all functions 

8~ ~'~') log p �9 e -r~ 
P 

change sign in every interval of the form (& 51/3) if only 0 < ~ < c~. However 

both methods fail to give the corresponding theorem for the "properly t~eby~ev- 

functions" 

(1.9) F~,,l~(x)a~ ~, a,J:L-p:, /~p r �9 

P 

In what follows we are going to give a first contributien to this difficult question. 

2. We observed that the difficulties can be essentially reduced to theorems 

of Markoff's type. More exactly we mean the following type of problems. 

For a fixed positive integer n we are given a sequence of complex numbers 

(2.1) 0 = 2o,21,22,...,;tn 

and for 

(2.2) f (x )  = ~, a,,x" 
v=O 

we define the "2-derivative of f ( x ) "  by 

(2.3) fx(x) = ~ 2,avx v . 
V-----O 
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Then the problems in question ask with prescribed ), ~ - 1 and a < b what is 

(2.4) max Re xVfa(x) 
a < x  -<b 

if f (x)is  of form (2.2)and restricted by various conditions. We get back 

A. Markoff's classical theorem by choosing 

T = - I ,  2 v = v  ( v = l , 2 , . . . , n )  

and restricting the polynomials f(x) by 

max If(x) [ = 1 or osc ~f(x) = 2. 
(2.5) o < x  < b  a < x  < b  

In our intended application we need 

(a,b) =(0 ,b ) ,  T=0 and 2v =log (v + 1) (v = 1,2, . . . ,n) .  

We realized that a good upper bound for max Re x~f~(x) would do the 
(o ,b) 

purpose (though the exact solution would be in itself much more satisfactory) 

and conjectured that in the case (2.5) a power of log n will give an upper 

bound. Now it was G.  Szeg6 who by the aid of the integral formula 

oo 

f e_t e-Vt 
(2.6) log v = t dt v = 1,2, ... 

o 

and the subsequent representation 

e -  t 
(2.7) f*(x)  d.ef ~ log (V "1- 1)avx" = ~ -  {f(x) - f  (xe-') } dt 

v = O  
0 

proved the following theorem. 
If  for 0 < x < b the inequality 

If(x) =< ~o 

holds, so we have here the inequality (independently of b) 

IS*(x) I__< 4/~olog (en). 
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He will give his proofs for this and related theorems in a separate paper. 

Actually we shall need his theorem in the following form: If  with a d ~ 0 

we have for y > d ( > 0 )  

m 

(2.8) J L  b'+te-'YJ<P' 
then we have for the same y-values the inequality 

in+l . J 
(2.9) I ~ b, l o g v ' e  -vv < 4 p l l o g ( e n ) .  

r  

3. Having this theorem one can proceed as follows. Let with our 6's 

1 / 
(3.1) M < exp [ 

\ 
23 log (1/6) log3 (1/6) 

log2 (1/6) I 

and suppose for some of our l,,12's and Ft,.12 (x)-function from (1.9) the 

inequality 

(3.2) max  I 

holds. Since for x > 6~/a we have evidently 

~o 1 2 ~_~ (11,12) --px = e - n X  

p ~=o 1 -- e - x  6113 

this gives 

(3.3) max I Ft,,'2( x)] < M + 26-, /3.  
x_~6 

Next we remark that for x ~ 6, 0 < 6 < c2 we have 

(h J2) [ -px[  n,x 2 ~P e < ~ e -  < e -(l/2)l~ 
p> (l/~)log (I/d) n>(1/6)log2(ll6) 

and thus from (3.3) for 0 < 6 < c3 
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[ ~ E~l'12~e-PX]~ M + 3,5-~/3 max 2 I x_~ ~ p<(1/6) log  (l/t~) 

Now we apply Szeg6's Theorem (2.8)-(2.9) with 

b,+le-" = ~2 ey '''2) e-,,-1,y 
v = 0  p _~ (1/alog2(1/~) 

Pl = 2M + 4`5-113 

d= `5  

This gives for x _~ 5̀ the inequality 

~ ( / l ,12) log  p �9 e -py I 
p _~(1,6)1og2(|# ~) P I 

and hence for `5<c4 for x > ` 5  

1 e'~t"t"l~ P e-P' <8(M+ 2`5 -1,3)log {"~" log2 "~ - } 

1 
+ ~ log n �9 e - '6 < 17(M + `5-t/3)log -~ .  

n>(1/6)log2(l]6) 

But for 5̀ <c5 this contradicts to either (1.7) or (1.8). Hence (3.1)-(3.2) lead 

to a contradiction and hence we got the following 

T h e o r e m  I. For any  11 # l  z among  3,5,7 f o r  0<`5 < c 5 we have the 

inequali ty  

t,_=t,moda I 1 ( log (1/`5) 1og3(1/`5). ~ max ~ e -px -- ~ e -px >-- - exp --23 
~_x~_61/3 p=-lzmod 8 ~/`5 \ log 2 (1/`5) / 

To the more difficult problem of one-sided theorems we hope to return. 

In the case when one of the l's is 1, a combination of the above reasoning 

with the theorem of Hardy-Littlewood-Landau leads to the following 

T h e o r e m  II. For l ~ 1, k = 4 or 8 and 0 < `5 < c 6 we have the inequali ty  

/ log (1/6) log3 (1/`5)] e-PX max ~e_pX - ~ > 1 e x p -  23 
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