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1. Tn a report dated from June 19, 1871, which was written to sup-
port the designation of Chebyshev as foreign member of the Academy in
Berlin and signed among others by Kronecker, Kummer, and Weier-
strass, one reads the following passage (see .

«, . Tndlich ist Herr Tschebychew der erste Mathemaitiker, welcher
fiir die Anzahl der Primzahlen bis zu einer hohen Grenze den Ueberschuss
der Primzahlen der Form 4n-+3 iber diejenigen von der Form 4n4-1
constatiert und fiir den asymptotischen Awusdruck Vuflogs angegeben
hat.”

What was behind these lines? Chebyshev wrote in a letter in 1853,
ie. a few years after Dirichlet proved that for (%, W=(&14) =1
in a weak sense the number of primes = [;(mod¥%) is asymptotically
equal to that of the primes = l;(mod %), that he is in possession of a the-
orem which ean be popularly expressed so that there are more primes of
the form 4n-+3 than of 4n-+1. He meant by that (according to his let-
ter, which is printed in [2]) thab

(1.1) lim E(—l)‘”‘”’ze'”‘” — oo
o0 5
(p denoting always primes) and stated also the existence of a sequence
T < By << .00 —> 00
such that for » — co
(@, 4,3)—m(®,, 4,1) .

1.2 ZWe T Tl e Tl 1.
a.2) (va/logm,,)

(Here and later =(z, &, 1) stands for the number of primes not exceeding
»# which are = Imodk, (k,1) =1, ¢1,Cz)--- pogitive, explicitly caleu-
lable constants.) Most probably in Germany nobody read the original
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letter; only rumors came to Berlin with the natural distortions of the
truth, and Chebyshev's scientific prestige was very large. The report
shows anyway what an interest was aroused by these announcements
and that the two tendencies in the theory of primes, to find uniformities
resp. discrepancies in the distribution of primes in progressions modk,
started approximately simultaneously. Calling the second named trend
comparative prime nwmber theory one can say that this theory —in
contrast to the uniformity trend—was until recently in such a shape
as if we knew on the distribution of primes only that there is an infinity
of primes (and even less). We made a systematic sbudy of these questions
in a series of papers (see [3]) to remove thiy theory from the deadlock
in which it apparently was and in this new series of papers we want {o
continue these investigations.

2. Rirst of all we shall give a somewhat amplified systematization
of the problems of this theory (far from exhausting them), compared to
the previous one, given in I. of the sequence quoted in [3]. We use the
standard notation, 4(n) for the Dirichlet-von Mangoldt symbol, further

(2.1) p (5, T, Z A(n),
nml(lc)
(2.2) M, &,1) = 3 (A(n)flogn),
neai(i)
(2.3) 8(z, k, 1) Zlagp,
Zlul(lu)
(2.4) m@, k) = D1,
. =]
pe=l(k)
further

Ai(@y ke, by b)) = (@, &y ) —
Aoy Ty 0y 1) =
Ay, T, 0, 1) =
Aoy Ty 1y, 1) =

vz, k, b)),
D@, b, L)~ (2, &, 1),
0@, ko, 1) —0(x, &, 1),

w(@, oy Uy) —m(w, oy 1),

(2.5)

Then the problems of the theory (in first approximation) arce the follow-
ing ones.

PROBLEMS 1-4. “Infinity of sign changes, ”

To prove that the functions di(@, Ty Uy, 1) for § =
, # (k) change sign infinitely often.

L, 2,3,4 and
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PrOBLEMS 5-8. “Infinity of big sign changes.”
To prove that for each of the functions 4;(z, k,0,, L) (j =1,2,3, 4
and 1, # L(k)) and arbitrarily small ¢ > 0 there is a sequence

(2.6) . B < By < ... > Fo00
such that, for » =1, 2, ...,
i@, &y 1y, b)) >l
and hence owing to the symmetry of I, I, also a sequence
LYy < ovv =+ Fo00
such that
Aoy by 1y b)) < — ¢

ProBLEMS 9-12. “Localised sign changes.”
To prove that for T > T, (%, j) and suitable A(T) < T all functions
dy(w, k,1,,1,) change sign in the interval

A1) <2 <T.

ProBLEMS 13-16. “Localised big sign changes.”
To prove that for T > T,(k,j) and suitable A(T) < T for each
funetion 4;(x, %, 1,,1,) the inequalities

s
max Ai(z, kL, L >——
AT)cneT J( g by lbyy be CD(T)
and hence also
it
min  d;(z, k, I, L) < ——=-
A(T) T 7( y Vy b1y ..) @(T)
hold, with a @(x) > 0, satisfying also
log &
.1 lim “282@ _
sateo  10ZET

ProBLEMS 17-20. “First sign change.”

To determine for j =1, 2, 3, 4 functions 4;(%) (which are generally
better than those given at the previous problems) such that for 1 <o <
< 4;(k) all
k fixed,

Ai(wﬁkalnlz)a ll ila(k):

functions change sign at least once.

PrOBLEMS 21-24. “Asymptotic estimation of the number of sign
changes.”

Clear.
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PROBLEMS 25-28. “Average preponderance problems.”
To mention a typical one, the results of Hardy-Landau-Littlewood
indicate that the inequality

(2.8) w(n, 4,1)—n(n, 4,3) < 0
is true “much more often” than the inequalily
(2.9) w(n,4,1)—m(n, 4,3) >0.

Hence denoting by N(z) the number of indices n <& with the property
(2.9) probably the relation

N(w
(2.10) fim 2@
Zyqoo L

holds.

ProprEMS 29-32. “Strongly localized accumulation problems.”

In the previous problems in wvarious ways the number of all
primes <« in a fixed progression occured. One can imagine that one
can much better localize relatively small intervals where the primes of
some progressions preponderate. Again instead of writing out gener-
ally the pertaining problems we confine ourselves to indicating the
character of them by mentioning just one. Is it true for 7' >0 (e
numerically positive constant) that for suitable 7 < U, < I, <21
we have

Yoo ¥ £
- R 1> -
Uls‘p—évz U;gﬁfl\gvg B(1)

P=1(4) p=3(4)
in the sense of (2.7)%
ProBLEME 33-36. “Littlewood-generalizations.”

A typical problem of this type would be the existence of a gequence
@ <@ <...—> +oo such that simultaneously the inequalities

m"
(2.11) a(o,, 4,1) > } Liw, = } f L
‘ logu
and
(2.12) 7w, 4,3) >} Lie,

hold.' This would constitute an obvious generalization of Littlewood’s
claggical theorem that for a suitable sequence ¥, <4y < ...-> -~oo the
inequality

#(y,) = Liy,

icm®
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holds. Some further natural questions on the localization of the x,’s in
(2.11)-(2.12), we did not take up into this provisional list of problems.
PrOBLEMS 37-40. “Racing problems.”
Again only a sample of these problems: if 7, L, ..., Iz is any pre-
scribed order of the reduced residue systems modk then for a suitable
sequence @, < Ty < ...+ +oo the inequalities

a(w,, b, L) =a@, kL) =... =%,k lyg)
hold.
G. G. Lorentz called our attention to the fact that comparison
of the primes of any two arithmetical progressions modk; and &, (& =#
# k) is not trivial in the case when

p(l) = @(ks),
and analogous problems occur for moduli %, &y, ..., & with
p(ly) = plky) = ... =¢(k).
This leads straight to the following problems

PrOBLEMS 41-44. “Union-problems”.

A typical problem of this kind is the following: For a given modulus
% do there exist two disjoint subsets 4 and B, consisting of the same
number of residue-classes, such that
(2.13) Moi> M

Ped, DT DB, LT
for all sufficiently large a's?

Chebyshev's conjecture and the subsequent investigations of Hardy,
Littlewood, and Landau (see [4] and [5]) give an importance to all these
questions considered “in the Abelian sense.” This gives the problems
45-88 replacing in the respective ones

ple,k,0) by > Ame™,
n=l(k)

- ! A(”’) —ar

T, k1) by Lﬂg :
n=1(k) g

0(x, %, 1) Dby E logp-e™™,
p=T(k)

w(w, k,1) by E e,
p=Uk)

and
oo e__”,. Z
Liz by f Togy .
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Obviously comparing the primes represented by two quadratic forms
f and g, respectively, we encounter problems of (2.13)-type again. An-
other set of interesting problems arises by comparing the primes repre-
sented by a fixed quadratic form in various angles (theorem of Dirichlet-
Hecke).

All these problems have their natural analoga in algebraic number
fields, replacing residue-classes by ideal-classes in various senses. The
only result in this direction, as far as we know, is contained in a paper
of Landau in Mathematische Zeitschrift 2 (1918), pp. 52-154. In all these
problems our methods have still more definite advantages compared
to the older ones, since they give more explicit dependence of the extima-
tions in terms of the parameters of the field concerned.

3. In our previous papers we proved several theorems concerning
problems 1-24; we had no vesults at the time for accumulation probloms
29-32. In the first few papers of this series we shall bo engaged with
these problems; as far as we know they are the first results of their Spe-
cies. Contrary to our first series [3], which was written out in the pos-
session of the whole material, this time we have it only for the first three
or four papers of this new series.

First we state the following theorem (¢, and later Cyyenn
explicitly caleulable positive constants).

If ey is sufficienily large, 3 < k << 10 and T > ¢, , then Sor all (1, k) = 1,
155 1(k), there are suitable U,, Uy, U,, U, numbers with

stand for

Pp-logher <U < U1

and
11/12 i
T s < U, <1

so that the inequalitios

(3.1) > Amy- A(n) > VT gl
n=1(k) mel(kb
UysnglUy Uysn<U,
and
1 T logll/1;
(3.2) 2 A~ 3 A(n) < —VTerlstior
=1 (k) Nl (k)
UgingUy Ugsng Uy
hold.

In the case of a general modulug k, we can prove an analogous the-
orem only for such %’s, for which the so-called Haselgrove condition
holds (which is the case certainly for 3 <k < 10). Thiy condition requires
the explicit value of an B = F (k) such that no L(s, y) functions belong-
ing to modk and s = o--4t, can vanish in the domain

(3.3) O<o<l, |t <EM.

icm®
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That this condition is intringically connected with our subject, was already
mentioned at the end of our first paper in series [3]; hence it would be
a problem of high interest to prove that the number of such %’s is infinite
or even the number of those %’s is infinite for which IZL(s, ) has no
x
positive zeros. For the moduli % we can state the following theorem (*).
If ¢y is sufficiently large and

(3.4) T> max(cz, e, (%), ez(llE(k)))
then for all (1, k) =1 there are suitable U, U,, Us, U, numbers with

Te 8™ < 7 < U, <T
and

Te_lDKII[IZT <U,< U, <T
80 that the inequalities

D Am— > Am) >VIem T

na=i(k n=l(k)

UsngUsy UngU,y
and :
> Am— > Am) < —VTemles T
nml(k) n=i(k)
UssngUy Ussn<Uy
hold.

4. 'What we shall actually prove is a bit more. We assert the fol-
lowing theorem.
TEEOREM. Let & fulfill the Haselgrove condition, (1, k) =1, and let

® 2 = fao-t+ive,

be a zero of an L(s, 3*) with y*(1) 1 and f, = }. Then with a sufficiently
large ¢; for

(1) T > max (o5, e (k), e:(1/BE), ex(ls)))
with switable U,, Uy, Uy, U, satisfying
(4.2) ' T T < UL < U, < T,
(4.3) Te s « g < U, KT
the inequalities
(4.4) >oAm— Y A(n) > Tl
n==1(k) n=l(k)
Uisn<U, UysngsUsy

(1) In what follows is e;(z) = €%, e,(z) = e1{e,—1(2)), logiz = logx, log, 12 =
log (log,x).
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and

(45) 3 A= X Ay < =D
n=z1(k) n=l(k)
UgnsUy Ugssns Uy

hold.

This theorem contains the one given in section 3, e.g. owing to the
following theorem of C. L. Siegel (see [6]).

If x, is a primitive character belonging to the modulus L, then L(s, y))
has a zero o' = o' it in
(4.6) 1<o <1, || < cflogy (k™).

5. In the series [3] the starting points were integrals of the formn

1 . 28
(5.1) 9 (.;)f Z‘,;"F(S)d@
with
1 V-, L'
5.2 P(s) = ——— Y75 (s, ).
(5.2) W= = oy 2 A0 T 60
The essential novelty is that now we investigate integrals of the form
1 . 6.‘88___6_1;’3 »
3 L i SR
(5:3) 2m J ¢ ( 2Bs )F(s)dS

@)
with suitable positive 4, B and integer y. The advantages of the kernel
Bs —Bg\ 5

(5.4) P £

2Bs
over the kernel
(5.5) & ls”
were first realized for other aims by the second of us (see [7]). But for
one-sided theorems it conld be applied only recently, through a lemma,

well known in caleulus of probability as mentioned to us by Mr. Rényi
and Mr. Kendall. This is the

Levma T If % =2 is an integer, then the funetion

oo
~ [ sing )\
Fol@) & f (—r) cosaldt

0

decreases monotonically for @ >0,
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We prefer to give for this lenuna our first independent proof, based
on induction with respect to k. For & = 2 this is a well-known property
of the Fejér kernel. Suppose that it is true for a k¥ > 2. Owing to the
formula

fin (@) = —3(fele—1)—fele+1)) = —3{fsl—2)—fu(l+a)
applied for « =1, vesp. for 0 <z <1, the assertion follows indeed.

6. The basic tool for the proofs is again the following one-sided
theorem which we state as Lemma II(%).

LevwvA IL. Let n < N,
loa] = 12| = ... = 2l
and with an 0 <» < ¢~
(6.1) % < areyl <=, j=1,2,...,n,

further for the bi-numbers the restriction

(6.2) DY minRe(h,+...4+b,) >0

n
should hold. Then to each non-negative m there are inlegers v, and v, with
(6.3) m < vy, vy <MAN(B+7[x)
such that the inequalities

n v Y aN

2™ { N }
6.4 Re M bz = D :
(6-4) AT T 2N+ | 24e(m+ N (34 n[x)
and
6.5 R 3 b2t < —D 1] { N i
(6:5) ej.zl s IN+1 | 2e(m+N(3+n[x) |
hold.

7. We ghall need two further lemmas(3). Let {#} denote the frac-
tional part of #, By, B2, ... arbitrary real numbers, further let o, as,...
be real numbers for which

(7.1) ol =4, 0<A<1

(2) Tor the proof of this lemma, see the paper {8]. We remark that Mr. S. Uchi-
yama succeeded in reducing the constant 24e to 8¢ and shortened the proof by one
step using an ingenious remark (in a letter). (In (4.8) and (4.9) on p. 34f. Le. the con-
stant 24 is to be replaced by (24e.)

(%) In a special case and in a slightly different and weaker form this was
proved in [9].
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and for all real h-values we have

(7.2) D 1 <w(l)
hga,<ht1
such that
o0
(1.3) M:S-; (P+1) <

Then we assert the

LEMMA III. For any ¢, < ¢ and
(7.4) T > 1/(es—¢;5)
here is a & with
(7.5) et < &y K epT
such that for all indices v the inequality

1 2 1 1

To0 8 Tra Stebthl <i-4

1

(1.6) ‘It a

ral =~
&:

holds.

For the proof, first we fix the index » and consider the linear form
f, = a,z+p,. If » runs over the interval in (7.5) then f, passes at most

(7.7) 14 (ce—es)|aslT

integers; add two more integers: the one immediately greater and the
one immediately less, then call all them ¢'s. Fixing any ¢, the z-values
with

A1

|avw+ﬂv’_ql 100 8 1+a27

form an interval of length
142 1 1

50 8§ 1+d
the total length of thege “bad”-intervals at a fixed » cannot exceed,
owing to (7.7),

50 8 1-+d |a

and if » runs over all positive integers the total measure of the set of
“bad” s-values cannot exceed

2 13+e—e)lalr _ A g\ et
7.8) —— — e = 4 = (8
@8 503% 1+ @), 508 (lu,y% - Z) 50& & “S‘

(3+ (Ge‘—cs)lavlf)

loy|>1

icm
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For 8, we have from (7.1), (7.2), and (7.4)

0 1
(7.9) 8 <3 2O oo efw0)+0()
4 8
7( s 05)T{w(0)+ (1)) < —ZS(OG——CS)T.

For 8, we have from (7.4) and (7.3)

3 1
8 < 5 +(G—)T y < ${e—0s)T >
13,11 1t e la=1 St 12,11 1t
- v) -+ c)(1'+1) 16
< 4(0—t5)7 Z T < 16(0— 05) T8 < S S(a— o).

From this (7.9) and (7.8), the measure of the “bad” set cannot exceed

A 24

1
TOST‘S’( s — C5) T < (

—e5)T

which completes the proof of Lemma IIIL.

8. Finally we shall need the
LevwaA IV. There exvists a broken line W contained in the wvertical

strip Elm <o <1:7,, say, consisting alternately of horizontal and wvertical
segments such that

a) any horizontal strip of width 1 contains at most one of the horizon-
tal segments, '

b) on W the inequality

(s, 2)| < erklog'k(2+ i),

| L

holds for all characters y.

The routine-proof of this lemma follows exactly the lines of one
given in Appendix ITT of the book [10] and can be omitted. Introducing

the function
1 _ I
TP U A

this lemma gives that on W the inequality
(8.2) |F ()| < eaklog®k(2+ 12])
holds.

Acta Arithmetica IX.1 3

(8.1) F(s) =
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9, Now we can turn to the proof of our theorem. Let

15 98 (_ 1~191)
=)

(91) h=1130 "33 3

further 4, such that

1—49, 51 1 1
(9.2) 3 Ty Py > ﬁo—ﬂ" s
(that goes) and
(9.3) Py = Py —10"1",
With these notations, let
(9.4) B 10g~"11,

the positive 4 and integer » restricted in this minute only by

(9.5) Hhlog,T < 4 < Hlogy 1,

logT' logZ
9.6 3 099 —— < r € —-.
(8.6) <)M TE <" < Uiz

We start from the integral
..Bg P
(9.7) J, =—— fF ( ) ds.
Replacing F(s) by its Dirichlet-series the reasoning of [7] gives
(9.8) Jr= D" A(mf(n)— > A(n)f(n)
nal(k) neml{k)

where the summation refers on both places to

(9.9) a((4d—B)r) <n < e((4+B)r)
and
1 Bs __ ,--DBs\p
f(n) = ey (_e__o_ﬁi_“._) eldr=logn)s 4o

@)
Shifting the line of integration to the line ¢ = 0 we get also

1 [ (sinBt .
9. ) = = v —10g)
(9.10) fn) ”of( )cos(jh logn)tds.

icm
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This makes sure that J, is real. Introducing u;(z) by
(9.11) wle)= D Adm)— > An)

n=1(k) n=l(k)
nga nLT
(9.8) can be written as
&)((4+B)r) ey{(4+B)r)
o= [ f@ape) = [ wef@d.
ey((4~B)r) ey((4—B))

Introducing the new variable

=ea(d— y)7)
this gives

B B

af (eH4=r

019 = [ T g e gy
-B y -B

where

1 [ [sinBt
V(y)*?%’ﬂj ( B

Since V’(y) is obviously an odd function of ¥, (9.9) gives
B

Ir = [ {pu(d+) — (=M —TV" () dy
0
or, owing to Lemma I,
B
(9.13) Ip = [ (e ) — gy (e Y (9)| dy -
0

Denoting shortly

max {9 (Us)—w(U1)} by My,
el d—B)r <7y < Upsceld+B)
(9.14)
min {p(U)—wi(Us)} by M,

el d-BYr <ty <« Uy +B)r

we get from (9.13) and Lemma I
1 f sint \"
nB
0

9.15)  J. \le |V ()| dy = M,V (0) =

and analogously,

j 1 [ [sint
(9.16) > My of ( )

g 1 £ [sint Y
cosrytdt :———f —_— 8§ —tdi.
) y =B J ( 7 ) B

35
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10. Now let us consider J, in the form (9.7). Shifting the line of inte-
gration to the broken line of Lemma IV we obtain, since J, is real,

Bo _ ,~Bo \»
7 B Y’l 7 Z’( ‘ )B“Q ) +

o(x)
By
7 (s) ( S ) ds),

where the dash means that the summation has to be extended only to
such zeros of the L-functions which are right to W (and, of course, ave
zeros of such L-functions for which x(I) s 1). The last integral is owing
to (8.2) absolutely

(10.2)

(101) J,=

+ Re(

< cyklog k- @B (900 /B,
The last factor is, owing to (9.4), (9.6), (9.8), (9.2) and (9.3),
< (200)\98TI03loxs T P1l0y - 048

if ¢; in (4.1) is sufficiently large. Further, using (9.6) resp. (4.1), we have

GBI oot
Tesp.

klog*k < (log, T)?,
and hence, if ¢; in (4.1) is sufficiently large, the expression in (10.2) is
(10.3) < T,
Next, writing the p-zeros in the form
0 = 0,1,

we consider the contribution of zeros with

(10.4) It > loghT,

Since the total number of zeros with A <f, < A-+1 cannot exceed ag
well known

(10.5) ey klogh (24 |2)),

this contribution cannot exceed

cH+Byr T (log T)z

10.6
(10.6) (Blog™T'y — (logi 1Ty

enklogkT

icm
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if ¢, is sufficiently large, owing to (4.1), (9.4) and (9.6). Using the first
half of (9.6) and also (9.5), the quantity in (10.6) is in turn for sufficiently
large ¢

(10.7) < T("'(*’t"'"l))“-’"/"a(logT)’ < 1:0.495,

owing to (9.2) and (9.1).
With the g, of the theorem we may write the remaining sum in

(10.1) as
By — By = ;" ~B
BN el ’Re{ 21-—25(1) (A(g_,,o, il il 19.,1)}
2 — p(k) 4 le"0—e~0] o
21
—Boy |r
ot gty | 0=
€ 2Be, (r),

where 3’ means that the summation is extended to those g’s, right to W,
for which the restriction

(10.8) 2, < loghT

holds. Then collecting all these we have

—Bey |r

(10.9) oted| "0 I Rez(r)] < 2T

11. Z(r) is obviously of generalized power-sum-type and we shall
try to apply Lemma II. The role of the b’s are obviously played by the

quantities -—(Z)(l) and hence for the D in this lemma we have
@
1—cos(2njp(k) _ 1
111 > 1 -3
(11.1) > (e )

owing to (4.1). Owing to (4.1) we have
ol < lool < log™T;

hence p = g, occurs among our p’s and thus

(11.2) [z} =1
(the role of z’s are obviously played by the
ey = el
JePro =% g

numbers). The arguments of these numbers are obviously given by

Be __ ,—Be Bo__ ,—Be
{2 el s L 25,
0 2n 2w 0
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A was so far restricted only by (9.5); now we shall determine it by apply-
ing Lemma IIL. The role of the «’s in this lemma is obviously played by

the é-@. %, that of the '8 by the
T -

1.
numbers; as 1 we can choose 5 Ii(k), as = the number log,7', further

ATC
s =y, ¢, = Oy, and a8 A we choose the &, of this lemma. As w (@) we can
choose, owing to (10.5), the function
Teklogh (8- 2ru),
and hence as § of this lemma we can choose ¢ klogk. Then Lemma IIT
assures the choice of A such that for all #'x
1 Bk 1 1

acs| = 2n —- . . -
ez = 2 o kg h e’

and hence owing to (10.8)

% 2 0y Ifllcflgc)k log=* 1.
Taking in account (4.1), we obtain that as » we might choose
(11.8) log=*"T' (log, I')"°.
As N we can choose (if ¢; in (4.1) is sufficiently large)
(11.4) log™T (log, Ty

owing to (10.5), (10.8) and (4.1). Hence (if ¢, is large enough)

(11.5) N (3 + ;:-) < log** T (log, TY';

remarking that
80, = 155 < 1,
we choose
(11.6) m o= 0B oo T(log, T')'
A+RB e

(this is lql'ge Dositive owing to (9.5)). Choosing  as », and vy Of Lenuma 1T,
the requirement (9.6) is certainly fulfilled; hence for sufficiently large oy

1 ( A+-B )2‘103*’4 7 (loga 1)

(11.7) ReZ v'\ 16 Ty-3 — o elog Mm(logy T
(») > (log,T') TogT \ 3aslog . g los s lomy T
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and analogously
(11.8) ReZ(v,) < — o los% T(logy 7)°

12. Next give a lower bound for

eBea_ g—Beg |r

12.1 i
(12.1) 2Ba,

Writing the first factor in the form

(4+-B) -B
(e( + Jf)ﬁue rﬁo,

and since, for 7, Lemma IT gives

log?
(12.2) re i’_ — — log**sT (log, T,
we obtain for it the lower bound
(12.3) TP 8—1033"4T(]gg2 TP—logl—"1 T

using also (9.4). As to the second faetor in (12.1), we have

= (1_ N (Bieon*”)f

oPeo_ g~Fao
&d (2v+ 1)!

2Bo,

and, since from (4.1)
@l < log, T

Blel = 1gng < Togiz”

for sufficiently large ¢;, this is
> 6—0131021'011’.

This and (12.3) give for the quantity in (12.1) for sufficiently large ¢,
the lower bound

B0~ (o Tlogy T) +10g' 217}

Collecting this, (11.7), (11.8), and (10.9) we get, for sufficiently large ¢,,

(12.4) g, > 7o g —Cas{log! =217 + 1og™%4 710z, 7)8) ~ Thog-tlogt/i3r
. v

and

(12.5) J"l < _Tﬁoe—-}lozulmz"

using (9.1).
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Now we shall use (9.15) with » = », remarking that
=+ . », o0 dt
f (E?—t—)zdt<1~l—f o <
0 1

using also (9.15), we get

(12.6) M, 2 J,,B > TP (—log"*T)
and analogously
(12.7) M, < —TPe (—logh™T).

What can be said about the interval which contains (U, U,), resp.

(U, U,)? Since
e(A-pB)r < m

and, from (12.2),

39, 8_o1opl—? logll/12
GBI o (AL BY ~1Br - 1p-203108°*4 T(log, T~ 2l0g 11T o, -log nzp QE.D.

References

[1] Kurt R. Biermann, Vorschlage zur Wahl von Mathematiliern in dic Ber-
liner Akad, Abhandl. der deutschen Akad. der Wiss. Berlin, Jahrg. 1960, No. 3,
(1960), p. 43. .

[2] Lettre de M. le professeur Tohébychev a M. Fuss sur un mouveaw thdoreme
relatif aus nombres premiers contenus dans les formes 4n-- 1 et 4n-- 3, Bull. de la classe
phys.-math. de 1’Acad. Imp. St. Petersburg (1853), p. 208.

[3] 8. Knapowski and P. Turén, Comparative prime number theory I-VIII,
Partly appeared in Acta Math. Hung. P. XIII. Fase. 3-4 (1962), pp. 200-864 and
partly in press here.

[4] G. H. Hardy and F. E. Littlewood, Oontributions to the theory of Ric-
mann zeta-function and the theory of the distribution of primes, Acta Math. (1918),
pp. 119-196.

[5] E. Landau, Uber einige dltere Vermutungen und Behauptungen in der
Primeahltheorie, I-1I, Math. Zeitschr. (1918), pp. 1-24, resp. 213-219.

[6] C. L. Siegel, On the zeros of the Dirichlet L-functions, Annals of Math. (1045),
Pp. 409-422.

[7] P. Turén, On the so-called density-hypothesis in the theory of zeta-funclion of
Riemann, Acta Arith. 4 (1958), pp. 31-56.

[8] — On some furiher one-sides theorema of new fype in the theory of diophan-
tine approximalions, Acta Math. Hung. 12 (1061), pp. 455-468.

[9] 8. Knapowski, On the sign-ochanges in the remainder term in the prime-
number formula, Journ. of Lond. Math. Soc. (1961), pp. 451-460.

[10] P. Turdn, Fine neue Methode in der Analysis und deren .Anwendungen,
Akad. Kiado, 1953, Budapest. A completely rewritten new edition will appoear in
the Interscience Tracts series.

Regu par la Rédaction le 1. 4. 1963

icm

ACTA ARITHMETICA
IX (1964)

The star number of coverings of space with convex bodies
by
P. Erpds and C. A. Rocers (London)

In honowr of Professor L. J. Mordell

1. When a system of sets covers a space, the star number of the
covering is the supremum over the sets of the system of the cardinals of
the numbers of sets of the system meeting a set of the system. The stand-
ard Lebesgue ‘brick-laying’ construction provides an example, for
each positive integer n, of a lattice covering of E" by closed rectangu-
lar parallelepipeds with star number 2"*'—1. In view of the results of
dimension theory, it is natural to conjecture that any covering of R"
by closed sets of uniformly bounded diameter has star number at least
2"*'—1; and this has been proved by V. Boltyanskil [1] in the special
cage n = 2.

In this paper we consider only coverings of E” by translates of a fixed
convex body. We first give a simple proof (the idea of which comes from
the work of Minkowski and Voronoi) of

TEEOREM 1. The star number of a lattice covering of R™ by translates
of a closed symmetrical convex body is at least 2™+ —1.

Then we consider the problem of constructing coverings of B" by
translates of a given closed convex body K with as small a star number
as possible. By a minor modification of method we used in [2] we prove

TEEOREM 2. Provided n is sufficiently large, if K is a closed convew
body in R™ with difference body DE, there is a covering of R by translates
of K with star number less than

V(DK)

V& {nlogn+nloglogn--4n+1}.

Here the ratio of the volumes V(DK)|V (K) is at most (2:), in general, and
is equal to 2" if K is symmetric.

‘We can neither prove that general coverings by translates of a closed
convex body must have a large star number, nor show that lattice
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