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1. In  the previous two papers o f  this series we proved under  the supposit ion 
tha t  no L(s, )0 functions with )~r  m o d  k ( s  = ~+it )  vanish for  1 

(1.1)  a > 1 / 2 ,  [tl<=clk 1~ 
and 
(1.2)  cr=1/2,  I t ] ~ A ( k )  (<--1) 

oscillation theorems for 
~,(~, k, h ) - O ( x ,  k,/.2) 

and 
II (x, k, l~)- ' II  (x, k,/2) 

in the general case when only 11 ~ Iz was required;  here as usual 

(1.3) 0(x ,  k, l ) =  • A(n) 
n ~ x  

n - = l m o d k  

(1.4) rX(x, k, l ) :  Z ~(~) 
,~_~ l o g n  " 

n ~ l m o d k  

As ment ioned 1. c. these results yield an explicit D depending only upon  k 
such that  differences o f  the functions in (1 .3)  resp. (1 .4)  have for  l<-x<=D at 
least one sign-change. The aim of  the present paper  is, as ment ioned already in 
paper  V o f  this series, to prove this result for  r directly, requiring only what  we 
called Haselgrove 's  assumpt ion (see (1 .5)  below). A t  the same time we shall show 
that  the differences r  l O - t p ( x , k ,  12) actually change their sign infinitely 
often. Our  results can be formulated as follows. 

TI-IEOgEM 1. 1. I f  for a k no L(s, X) rood k vanish for 0 < a -< 1, then each func- 
tion O(x, k, l O - O ( x  , k, Iz) , l~ r changes his sign infinitely often for l < = x <  +~o. 

As to the first sign-change we have 

THEOREM 1. 2. I f  for a k no L(s, X) rood k vanish for 

0 < ~ < 1 ,  ]rigA(k)  (~1 ) ,  

1 We remind the reader that, as in the previous papers of this series, cl, c2, ... denote posi- 
tive explicitely calculable numerical constants, (1, k) = 1, further e a (x) = e = and e~ (x) = e I (e v- ~(x)), 
log1 x=log x, log~x=log(log,_ 1 x). 
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then all functions 
O (x, k, l i ) -O(x,  k, 5), l~ ~ 6,  

change their sign in the interval 
/ 

1 = x = m a x  e 2 (k cz), 
\ 

with a sufficiently large c 2 . 

Both Theorems 1.1 and 1.2 are easy corollaries of the following, stronger 

THEOREM. 1. 3. I f  for a k no L(s, Z) mod k vanishes for 

(1.5) 0 < a < l ,  Itl<-_A(k) (~1)  
then all functions 
(1.6) O(x, k, 11) -~ , (x ,  k, 12), ll r 

change their sign in the interval 
og <= x<=e2V 7~ 

if  only 
2 

(1.7) co>=max(e l (kc2) ,e l (A- -~g))  

with a sufficiently large c2. 

As mentioned in paper I of this series, the problem of the first sign-change 
was the starting point of the present investigations; this motivates in itself why a 
separate paper is devoted to its study. The proof of Theorem 1.3 is less complicated 
than those in papers V and VI, though it needs the weakest unproved assumption. 
The main difficulties are analogous to those in the latter papers but owing to the 
special situation the use of an appropriately chosen two-sided theorem (lemma I 
below) could meet the difficulties. The present proof breaks down for 1-1(x, k, ll) - 
-- H (x, k, 12) as  well as for n(x, k, 11) - •(x, k, t2). 

As mentioned in paper I of this series, as far as we know no previously known 
methods can lead to results similar in character to our theorems. 

As to the cv's, c2, ca and c s matter, ca will be chosen sufficiently large, then 
cs large in dependence upon c a and finally c2 in dependence upon c3 and Cs. 

2. We shall need the following lemmata. 

LEMMA I. For r >el (k  c3) and 11 ~ 12 the inequality 

f I~(v, k, l l ) - -~(v,  k, 12)I 
V 

holds. I 
This is a weaker form of a result found by the first of us (see KNAPOWSKI [1]). 2 

2 Here the same lower bound was proved for 

f v-~]y)(v, k, ll) ~-~o(v, k, 12)ldv. 
r e  I ( -- l o g  0'gr) 
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Further we need the 
1 1 

LEMMA II. In the vertical strip ] 9  <= a <= ~ there is a broken line V, symmetri- 

cal to the real axis, consisting alternately o f  horizontal and vertical segments, each 
horizontal strip o f  width 1 containing at most one horizontal segment of  V, monoto- 
nically increasing from - o o  to + 0% so that on V the inequality 

L" Z) <= c~q~(k) (2. 1) ~ -  (s, log3k(2 + [tl) 

holds. 

Since the proof  is mutatis mutandis identical with that of  Appendix III in the 
book of one of  us (see TURs [1]), we shall omit it. 

3. We can deduce from the above lemmata the 

/.,EMMA III. Suppose that for a certain (l*, l~)-pair the function 

(3.1) O(x, k, l * ) - O ( x ,  k, IF) 

does not change his sign with an 

(3.2) co ~ e~ (kcO 

in the interval a)<-x<=2a) 5. Then --perhaps after changing l* and l* -- we have the 
inequality 

, ( 2 ~ 5 )  ~ 

where the dash means that the summation is to be extended over the non-trivial zeros 
right to V. 

For the proof  we start from the integral 

~ d  sl~176176 q~(k) 
(2) 

Inserting the Dirichlet-series representation we get 

H ( ( . o ) - - 1 ( . ~ A ( n ) . l o g 9 9 9  2('~ .~ A(n).log999 2~ ) 
999! ,<=2~ n ,_<-2~ " 

n -=/~rnod k n _-- l~mod k 

20.)5 

- -  999!1 f l~  2C~ 

1 

d~(~(x, ~, l~ ) -~(x ,  k, l~)) = 

2~5 

( ) - -  999] ~(x, k, l~)--~(x, k, l~))d x log 999 2c~ . 
x 

1 
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Using (3.1) this gives 
2,=o-" 

[H(o)[ ~ 1 f 2co 5 998! l~(x, k, l~ ) -  ~(x, k, l~)[.log99 s . dx 
X X 

(o 

o9 

f . 82co5 dx - -  IO(x, k, IT)-O(x,  k, h ) t . t o g ~  - - . - - >  
X X 

1 

1 
998! 

o35 

> C 7  

o 

[gJ (x, k, l~) - ~0(x, k,/~)[ dx -- c8co 1og99960, 
X 

and using Lemma 1 (if cs is sufficiently large in dependence upon %) 

(3.4) [H(co) I > c9co s/4. 

On the other hand Cauchy's integral theorem gives at once 

1 
(3.5) H(~,) - ~(k) Z (~(1~*)- ~q~)) Z~(z~ (2~176 

�9 O right to V ~ 1 0 0 ~ - t -  

+ ~ l  (2co~) s s  looo ~(k)l (~(Z~)-~q~))z-(s, z) ds. 
V 

The last integral is owing to Lemma II absolutely 

< CloO01/1~ log 3 k 
and  owing to (3.2) 

< e 11 O 1 / 8 .  

This, (3.4) and (3.5) give 

' 1 (2o) s~-~ 
(3.6) ~ X()~ ( l ~ ) z  - -  ~(l~)) 0 rightXe(Z)to v % 1 ~  , > c12~~ 

choosing c~ sufficiently large. Taking in account the symmetry of V to the real 
axis, the sum on the left of (3.6) is real and hence the lemma follows. 

4. We shall need two more lemmata. 

LEMMA IV. Supposing (1.5) we have for  

( T = n l a  C13 ~ (4.1) > x ea(k), ez 

the existence o f  a Yl with 

,(4. 2) log  2 Z <_-- Yl <= ~ log2 z 
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such that.for all 0 a~f a~, + ito non-trivial zeros of  all L-functions rood k the inequality 

e i to y, A (k) 3 
(4. 3) 7t => arg ~ -  -->ct4 k(1 + Itol)61ogak(2+ ]tel ) 
holds. 

For the proof see paper II of this series. 
Further let m be a non-negative integer and 

(4. 4) 1 = Izll ~=[z2t >--_ ... >=Lz, l 
7C 

so that with a 0 < z <=~- the inequality 

(4, 5) z <= larg zj] <= n 

holds. Let the index h be such that 
4n 

(4.6) Izhl 

and 
l 

(4.7) B def min Re z~ bj. 
h~_l~_n j = l  

Then we have the 

( j = l ,  2 . . . .  , n) 

LEMMA V. I f  B~O, we have integer v~ and v z numbers with 

m + l ~ - v l ,  v2<-_m+n 3 + ~ -  

so that 
,, ),~+,(3+L 

Re~=~ibJz~l>= B ( ( 2 n + l  24 m §  2" (1~1" - -  ") 

and 
n 

Re .~ b-z  ~2 --- J j - -  j = l  2nq-1 2 4 ( m + n ( 3 + ~ ) ) )  .(~_~k) "" 

For the proof see our paper [5], Theorem 4. 1. 

5. Next we turn to the proof of Theorem 1.3. Suppose that for a certain (IL l*)- 
pair ~k(x, k, I*)-~k(x, k, l~) does not change his sign in the interval 

(5. 1) 
where 

(5.2) 

co <_-- x ~ 2095 e 1#~', 

2 
co>-max(e l ( kc2 ) , e l (A - i~ )  ) �9 

2 Aeta Mathematica XIV/3 4 
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Lemma IV is applicable with z = e  V~ (the condition (4. 1) being amply satisfied 
owing to (5, 2)) and hence there is a Yz with 

1 1 
(5.3) 4 0  log co <--Yl <- 2---0 log o9 

such that (4. 3) holds. Fixing this Yl let the integer v be momentaneously restricted 
only by 
(5.4) ---og~ 

Yl Yl 

Applying Lemma 1II we obtain with a well-determined order of l~ and 13 

~ ,  (2~s) ~ . . . . .  5/4 
(5.5) 

~(k) , M""d ~, ,/ ~ I U U U  

where the dash means that the summation is to be extended over the ~'s fight to 
V. Then we start from the integral 

j a~f l_~_ f (2ms) * ~. . )c(t2))--L--(s, Z) as. 
(5.6) " 2ui 3 s~-}TS-g6- ~ ~ (~(I*)- - * L 

(2) 

Inserting the Dirichlet-series we get 

J, = ( ~ A(n) log  v+999 e r a .  2O) 5 

n ~  eVYl. 2(a5 n 

n = I ~ m o d k  

__ ~ ,  A(n) logv+999 e'rl.n2o951 1 __ 
.~v~ .  2o,~ (v + 999) ! ] n-~l~ m o d k  

eVYl . 20)5 

1 f 1 o g V +  999  _ _  
(5.7) - (v+999)!  

1 

evyl . 2o9s 

X 
dx(O(x, k, Y~)-~(x, k,  t l ' ))  = 

erYl . 2095 

= 1 (v+999)! Y (~/(x'k'l~)-~'(x'k'l*))dx(l~ 2o95) 
r 

+ o (e~(41~log2 @)~y~ + O(e1(41 r , ,o o1~ 
Owing to (5. 4) and (5.2)  we have 

e~y!. 2o95 <= 2o) s. elf; < e21/-g, 

+ 
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whence owing to (5. 1) the representation (5.7) gives at once that the sign of J~ 
would be independent of the choice of v (satisfying of course (5. 4)), Hence if we 
can show the existence of such vl and v 2 with 

1 1 
, , r ~ e l ~ O ] / ~  (5.8) s ignJ~ l=-s ignJv2 ,  IJ~,l>eXg~ IJ~21 

then our theorem will be proved. 

6. In order to do so we apply Cauchy's integral-theorem to J~. Then we get 

(6. 1) J~ - ~  z~'(~(l l)--  *" -- '  (2tos)e 

+ 1 f(e'l~'2tos)s 1 { Z  (~( '*)-~( '*) '  ~ }(s,z) ds, 
V 

where the dash means again that only Q's right to V are cou~ted. The last integral 
is owing to (2. 1), (5.4) and (5.2) absolutely 

< cl~to'l'~176 k log 3 k 

(6. 2) < c~6e~/,olr~. 

Using the fact that for a real r the number of the non-trivial zeros of all L-functions 
mod k with imaginary parts between r and (r + 1) is 

(6. 3) < c~7 ~0(k) log k(2 + Irl), 

the contribution of the ~'s with 

Itel > to lm+ 1 

to the sum in (6. 1) is absolutely 
log kn 

<c18 ~ nv+loootoSelr% 
11 ~ 021120 

Owing to (5. 2), (5. 3) and (5. 4) this is 

log to < C2oel (too,g1). (6.4) < C l 9 t o S e  V-~ 09 v/2~ 

(6. 2), (6. 4), (5. 7) and (6. 1) give, using also the definition (5. 7) of J~, 

(6.5) J;  1 x- (2095) ̀o {e rl~ / 1 - - \  

if only c 2 is sufficiently large; here 27' means that the summation is to be extended 
over those Q's right to V for which 

(6. 6) It.~l <--&/=0 + 1. 

2* 
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Let 
01 = tri +itl 

be one of the non-trivial zeros with (6. 6) for which 

(6. 7) 

Then putting 

7 = maximal. 

(6. 8) ~0(k) -~ (~(l~) - ~(l*)) ,~o~) (2c0s)~01ooo �9 erl~- oo loll ~'~rZ(v). 
�9 (6. 5) assumes the form 

J$ 
< 1 

(e~')'~lQll ~ Z(v) c22e1(~-] /~  ) 

or owing to the reality of Z(v) 

(6.9) J~ (eVrl)~l ReZ(v) <c22el(~-~I/~) 
lell~ 

7. In order to prove (5. 8) we shall use Lemma V. The role of the zfvectors 
will be played by the numbers 

eyl(o-aD - - I Q l l  
Q 

with O's satisfying (6. 6), that of bi's by the numbers 

1 , (2ojs)~ 
~0[k)(~(11)-s  oloo o . 

The condition max Izjt = 1 is owing to (6. 7) satisfied. Since (4. 3) is fulfilled, for 
J 

the Q's with (6. 6) we have 
a ( k )  ~ 

n ~ [arg zj[ = e23 - kcoo,3 log3 (kog) ' 

whence, taking in account (5. 2), we may choose 

(7. i) 

if only c2  is sufficiently large. Let 

(7.2) m = I -~1 - - -  
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From (6. 3) we get for the number n of  Lemma V the upper bound 

2c~7k log {k(3 + a~/:0)} �9 (co ~/:0 + 2) 
and owing t o ( 5 . 2 )  

(7. 3) n <  o9~/20 (log co) 3 

if only cz is sufficiently large. Let z h of  Lemma V be defined by 

where Q2 = ~2 + it2 minimizes 

(7. 4) t 
among the Q's in the domain 

(7.5) a->l /5 ,  Itl<----o~ v~,0. 

Then using (7. 4), (7. 1) and (5. 3) we have 

4 
-~ 'Y i  1 1 

e 1 1 
(7.6)  jzhj> 2(-o1/25 ~ 1 0 ~ = 2 0 0 o  9 25 250> 

4n 

eyl(_o2 - aD 
- - I Q ~ I  

Q 2  

i. e. (4. 6) holds in our case. Hence from (4. 7), using the minimum property in the 
definition of  z h we have 

1 _ . _ . , , ,  ( 2 o 9 0 ~  
B = - ~  Re ~z ( x ( l l ) -  X(12)) ~e(z) elooo , 

where X" means the summation certainly extended over all O's in the domain (7. 5). 
In order to obtain a positive lower bound for B we shall use (5. 5). This gives namely 
(since a e _~ 1/100) 

2 (2o:)  ~1~ 2 2co 5 

1 ltel _~oi1250 ~F~ r~] X 1 - ~ o ~ t r ~  

and hence 
co 5 log kco 

B>c609'/4-c24(0910gk-] o9999/2,o )>%5o9'/% 

if only c 2 is sufficiently large. Before applying Lemma V we have to show that 

( m + l ' m + n ( 3 + - ~ ) ) = (  |/-d~ --c~176 l / ~ )  Ya ' 

but this follows readily from (7. 2), (7. 1) and (7. 3). Hence we get by applying 
Lemma V for sufficiently large c 2 

~ ,  , c25 ~ ( Y l  ~ 2a~l/2~176 ~~ n( 3+~r''~ --m--n(3+z~) 
Re ~tvl) > 3 - o 9 ~ a  oJ \ 2 - ~  ] "[zhl v~" Izhl " "'.2 " ~ ", 
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i . e .  f rom (7. 4), (7. 1), (7. 2) and  (7. 3) 
4 

R e Z ( v l ) > e l ( - 4 1 , ~  ~ (erz~176 " "[Qt[ \ ~ogco/ \ ~ \ - -~-  
for sufficiently large c2. Owing to (7, 6) this implies 

( : e r~O/~-'~)" 1011 ~ 
R e Z ( V l ) >  1021 - "el  " 4 2  . 

Thus  f r o m  (6. 9) 
VlYl 

e5 ( l o ~ )  (~0 t/ ) Jr le2[~, el - 4 2  - c 2 2 e  1 -~ ; 

hence f rom (5. 4), (5 .3)  and  (7. 5) 

, 1  ) 
, e -- 42 -- c22e 1 ~ -  40 e~ ~40W (2o~/2,0) ~/log 

, 
, .-~d 1 

i f  c 2 is sufficiently large. Similarly we get  
t J~2 0. 

Hence  (5. 8) is p roved  if  only (5. 2) is satisfied which finishes m e  proof .  
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