
COMPARATIVE PRIME-NUMBER THEORY. VI 

( C O N T I N U A T I O N  OF T H E  G E N E R A L  CASE) 

By 

S. K N A P O W S K I  (Poznan)  and  P. TUR,/~N (Budapest) ,  m e m b e r  o f  the  A c a d e m y  

1. In the previous paper V of this series we discussed oscillatory properties of  

~(x, k, 1t) - ~,(x, k,/2) 
and 

n ( x ,  k, ll) - n ( x ,  k,/2) 
for the general case 

(1 .1 )  ll ;~ 1 m o d  k, l a ~ 1 m o d  k 

or  shortly, for the case (l~, lz)k with (1.1). As one could except, the treatment 1 of  

~z(x, k, l l ) -Tz(x ,  k, 12) 

is much more difficult and we cannot cover the whole case (1.1); what we can prove, 
refers to such l~, l z-pairs for which the number of  incongruent solutions of  the 
congruences 

(1.2) x 2 - l l m o d k ,  x 2 = l  2 m o d k  

are equal. As easy to see, these cases make out a large part  of all, in particular when 
k is very composite. 2 And even in these cases we cannot obtain unconditional results; 
we have to suppose that no L(s, 7.) functions rood k with Z CZo vanish in the domain 

1 
(1.3) a > ~ - ,  I t l~2c l k  1~ (s = a+i t )  

with a sufficiently large c 1 and moreover also for 

1 (1.4) ~=~-, itj<__A(k) 

with a positive A (k). More exactly we assert the 

J We  remind  the reader  tha t  z~(x, k, l) denotes  the  n u m b e r  o f  pr imes  no t  exceeding x, which 
are _= l rood k ,  (l, k )  is always 1. As  in the  previous  papers ,  cl . . . .  always denote  posit ive numer ica l  
explicitly calculable cons tants ,  fur ther  e l ( x )  ~ e ~ and  e v ( x )  = e~_  ~ ( e l ( x ) ) ,  logl x = log x and  
l o g ~ x  = Iogv-  ~(log x), p always prime.  Special a t tent ion  m u s t  be  given to the  cons tan t s  e5, c~ and  
c~; cs m u s t  he sufficiently large, c 1 large in dependence  o f  c5 and  c2 large in dependence  o f  c5 and  c l .  

2 As  r emarked  in KN~eOWSKI--TtJRAN [3], for  all (I, k ) =  1 the  n u m b e r  o f  solut ions  o f  
x 2 ~ l rood k is either 0 or  equal  to tha t  o f  x 2 --~ 1 m o d  k. 

5 Acta Mathematica XIV/1--2 
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THEOREM 1. 1. I f  for a k the assertion (1 .3) - - (1 .4)  holds, then for 

1 2o (1.5) T > m a x { e 2 ( c 2 k 2 0 ) , e l ( 2 e l ( A - - ~ ) + c 2 k  ) }  

and all (11,/2) pairs with (1.2) the inequalities a 

i l~ TI~ T )  (1.6) max {re(x, k, l~) -re(x, k, 12) } >~T-e a --44 -lo~-2T ' 
T1/3~x~T 

( 441~176 (1.7) max {=(x,k, l z ) -rc(x ,k ,  lO}>/T-e  1 k -  ~ . ]  
TI/3<=x<=T 

hold. 
The proof  of this theorem will be perhaps the most complicated in this series, 

indeed a baroque one, the ideas being a suitable combination of those used in our 
papers [2] and [3]. That the difficulties are not very much to be seen on the length 
of the proof, is essentially due to the fact that we could take over from paper [3] o f  
this series the rather difficult assertion (9. !3) without proof. Again it seems to be 
possible to deduce Theorem 1.1 from Haselgrove-condition, i. e. that for a suitable 
A =A(k)  no L(s, X) mod k vanishes in the parallelogramm 

(1.8) O < a < l ,  ]tl>-A(k). 

2. For  the convenience of  the reader we shall reproduce the necessary lemmata. 

LEMMA I. Under assumption (1 .8 ) fo r  

{ z > m a x  c3, ez (h), ee (2. 1) 

there is a Yl with 
1 1 

(2.2) 20 log/ . . . . . .  lo-  - -  ~ = y l =  1 0  ~2"g 

such that for all ~ = % + ito 
inequalities 

eltqYl 
(2. 3) z =>_ arc 

Q 

arc t~ 
(2. 4) z -> _ 

hold. 
For the proof  see our paper [1]. 

3. Fur ther  let m be a non-negative integer and 

(3.1) 1 - [zt[ => lzz[ <- ... -> Iz, l, 

non-trivial zeros of  all L(s, z)-functions mod k the 

A (k) 3 
c4 k(1 + [tel) 6 log 3 k(2 + IteD 

A (k) 3 

>=c4 k(1 + [tel) 6 log 3 k ( 2 +  [tel ) 

Since in the course of proof h will be distinguished to 12, it was necessary to state both (1.6) 
and (1.7). 
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so that with a 0 < n <_- ~- 
2 

(3.2) 

Let the index h be such that 

(3.3) 

z<= [arc zj[ --<_re ( j = l ,  2 . . . .  ,n). 

4 n  
[Zhl __--> 

m + n ( 3  + ~ )  

and fixed. Further we define for given bj numbers B and the index h~ by 

r 

(3.4) B =  min Re ~ b j  
h < ~ < h  1 j = l  

if there is an index h~ with 
2n 

(3.5) Iz~,l < [z~l 

and 
r 

(3.6) B =  min R e ~ b j  
h~--~=n j = l  

otherwise. Then we have the 

LEMMA II. I f  B > O ,  then there are integers vl and v2 with 

(3.7) m +  1<=vi, v 2 < = m + n ( 3 +  

such that 

(3.8) 

and 

(3.9) 

Re ~ bjz~' B 
j=l =>2n+ 1 

24 

n (1 1)m+n 
(m+n (3q-  

rt Re . ~.~< B n iZh] m+n(3+~) 
bjzj  = 

j=l 2 n + l  2 4 ( ( m + n  3 + ~ ) ) t  \ T ]  

For the proof see Theorem 4. 1 in our paper [2]. Further we shall need the 

LEMMA III. For sufficiently large c5 there is an co o with 

(3.10) 

and with sufficiently large e 1 

(3.11) 

1 " 3  3 c5 Ic ~= co o ~-- csk 

L~ =d~f c 1 k l ~  

5* 
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such that with an appropriate order o f  the given ls and 12, and with a suitable integer 
Vo restricted by 

(3.12) L2 L2 AvLl '16 
log L-------~ <= v~ <= log L 1 

the inequality 

{ 1 R e ~  (~(l~)-Z(12)) •'o(r, ~ j->-el L~ 

holds. 

For the proof  of this lemma see our paper [3] (see the corollary (9.13) of Lemma 
VI there). 

Finally we shall need the 

LEMMA IV. There is a connected path V in the vertical strip ~<=a~ 2" -~, 

symmetrical to the real axis, consisting alternately o f  horizontal and vertical segments 
and increasing monotonically from - ~ to + ~ such that on it for all L(s, Z)-fimctions 
mod k the inequality 

L" 
~ -  (s, Z) ~ c6k log 3 k(2 + Itl) 

holds. 

Since the proof  is mutatis mutandis identical with that of  Appendix III in the 
book of one of  us (see Tr_rRXN [1]), we shall omit it. 

4. Next we turn to the proof of Theorem 1.1. Let v o, co o, L~ and the order of  
ll and 12 be defined as previously and let T satisfiy (1.5). We define further T 1 by 

(4. 1) T1 dej T cflc3 "e 1 ( -- 2L2). 

Choosing in (1.5) c2 sufficiently large (in dependence upon c 5 and cl) (2. 1) is with 
z = T1 fulfilled and hence from Lemma I there is an y~ with 

1 1 
(4. 2) 20 log2 Tz <=yz <= ~ log2 T1 

such that for all 0-zeros of  all L(s, z)-functions mod k the inequalities 

(4.3) e 2 A(k)3 
rc arc >=C4k(1 + I t s [ )  6 log 3 k ( 2 +  [ t~ '  

elt~Yl [ A(k)3 
(4. 4) ~=> a r c - - 0  ~ c4~(i( 1 + Ite]) 6 log 3 k ( 2 +  ItQI) 

hold. Let the integer v be temporarily restricted only by the inequality 

(4. 5) log T~ _ l o g 0 ,  9 T1 <= v ~ log T1 
Yl Y~ 
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I f  none of the congruences ( 1 . 2 )  are soluble, the case is settled already in our paper 

(~ _->_ 1) 
[3]. I f  all solutions of the congruences (1.2) are 

(4. 6) x ~ ~l,  a2, ..., % mod k 
and 
(4.7) x=--fll, fl2, ...,fir, m o d k ,  

respectively, then we start from the integraI 4 

(4. 8) J(r) = ~ s v0+l of(k) (~(/i)--~(/2)) �9 
(2) 

.L A L" } 
L (s, Z)-- ~ Z ( X ( O ~ j ) - - ~ ( f l j ) )  ~-(2s, Z) ds. 

j = l  X 

Inserting the Dirichlet-series expansions we get 

(4. 9) 

Z A(n) 
n~eVYlooLVO 
n=llmodk 

log~+,o 1. ~'o ' 1  
J(r) = Z A(n) \ n / _ 

n<=eVylooLVO (Y -~- VO) ] 
n=12modk 

( ~o ) e'Y~woL~ ~ logv+,o e vrl L[ ~ , log v+~~ n2 

(]7 ~_ ~0) t ~- JZ= i V'I~' (A)n (V+Vo)! 
n<= e ~ -  ]/o~0L[0 

n -=~i mod k 
Vyl f r o  

logv+vo e ~0oL1 
n2 

_ ~ v Z A(n)  
j =  1 Vy 1 (V -{- V0) ! 

n<=e 2 ~/ ~OoLVO 
n=-fljmodk 

Let us observe that the contribution of the prime-squares to the first sum and that 
of the primes to the fourth one cancel, and analogous holds for the second and 
third sums. Hence 

(4. 10) 

< C 7 

J(r) I Z - ! ~ 

- Z logp 
p<=eVylcooLVO 
p-~llmodk 

v + v o + l ,  vrl Tvo~ 

(v + Vo) ! 

logp 

logv + ~o eVYl~ 
P 

(v + Vo) 1 

e log~+,o r~ 
p 

(v + Vo) ! < 

1 1 
{ (e vy'Co oL;~ 5- + k (eVY'cooL~~ 

4 By (cooL~'0) s we mean always e~{s log (tooLl'o)} with the real value of the logarithm. 
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Since from (4, 5), (4. 1), (3.11), (3. 10) and (3.12) we have 

(4 .  11)  vr, T~o < , r  

(4. 12) 

the expression in (4. 10) is owing to (1.5) 

logv+vo+lT * * * !ogv+~0+aT 
<c7 (V+Vo) ! (TY+kTu T~ (V+Vo) ! < 

)_0 - e l o g T  
"<c8T3 ~ logT. 

Taking into account (4. 2), (4. 5) and (1.5) with a sufficiently large c2 we get 

v > 5 log T1 log T 
log 2 Ta > e log 2 T 

and hence the expression in (4. 12) is 

1 

(4. 13) -< csT 3 log T(log 2 T) v+v0. 

Since from (4. 5), (4. 2), (3.12) and (1.5) we have 

(4. 14) v + log T 1 2L 2 < 21 log T 
v o -< 20 log2 T~ + log2 T '  

choosing r in (1.5) sufficiently large, (4. 13) gives that the expression on the right 
of  (4. 10) is 
(4. 15) <C9 T0,4 

The expression in brackets on the left of  (4. 10) is 

evr"~176176 log v+vo e~r'c~176 

= log x (v + vo) ! 
1 

and hence, putting 

(4. 16) 

after partial integration 

(4. 17) 

with 

(4. 18) 

d~(~(x, k, 12) - ~(x, k, 10) 

e~y~oooL~O d~r I1, 

t YI Y 

= ~ (~(x, ~,, t21-~(x, ~, **))d~ ,-l~ ~ : 
1 1 Y1 

1 
y, d~f y~+~o+* 
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5. For the (trivial) estimation of IJl[ from above we remark tha t  the function 

(5. 1) log x-log ~+~o Y 

increases for 1 <= x -<- Yt and decreases for Y1 <= x<= Y. Hence 

(5.2) IJl[ ~ Y1 log Y1 

Y 
logv + vo _ _  

Y1 
(v + Vo)! " 

Since from (4. 16), (4. 11), (4. 18), (4. 5) and (4. 2) we have choosing c2 sufficiently 
large in dependence of cl 

1 

Yx =<T~ < l o g T  
and hence (roughly) 

we get as in (4. 12) ( )r (5.3) ]Jl[<_-el 21 l ~ 1 7 6  
log 2 T 

Using again the remark in (5. 1) we have using (4. 11) 

Y 
log~ + ~o - -  

Y1 
J2 ~ log Yl" (v + Vo) ! "maxx~T {n (x, k, 12) -- n (x, k,/ i)} 

and hence from this, (4. 10), (4. 15) and (5.3) we get 

(5.4) log Yl" 

and analogously 

Y 
logv + ~o - -  

Y1 
- - -  max {re(x, k, 12) - n(x,  k, li)} >-- J (T )  - c l o  T~ 

(v+ Vo)! ~_~r 

(5. 5) log Yl" 

Y 
logv+~0 _ _  

Yi 
- -  rain {re(x, k, 12) - re(x, k, ll)} <= J (T) + Clo T~ 

(v+ Vo)! ~<_-r 

6. Since obviously J (T)  in (4. 8) can be written in the form 

J ( T )  = 5Ydi s~o +* 
(2) 

(k) (s, z) & +  

Yl S 

(e) 

/ L, } 
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the application of Cauchy's integral-theorem gives 

(6. 1) J ( T )  --  (2 ( l l )  - - ~ ( l z ) )  •s " + 
cp ) 5" e~0+l 

2~0 . (cooL~0) 2 
+ - -  Z ~,  (Z(Bj)-2(ej))  Z.~(x)' - 2 + 

 0(k) j= l  "7 1 
* 

1 (2qo- (z2)) T ( s ,  x) as+ 
(v) 

s f { _ _ L , }  
+2~/-~/  s "+'0+l ~0(k) j=l 

(v) 

where V is given by Lemma IV and the dash means that the summation refers to 
the non-trivial zeros right s to V. Using Lemma IV the two last integrals are absolutely 

2 1 

< c l l { Y  ~ .  5~+~~ log 3 k + Y~-- 10 ~+ ~~ z log 3 k} 

and hence using (4. 11), (4. 16) and (1.5) 

(6.2) < c12 T0'41 �9 10 ~+~~ 

if only c2 in (1.5) is sufficiently large. (4. 14) gives further from (6. 2) the upper 
bound 
(6.3) C13 T0'42. 

We estimate roughly the contribution of the non-trivial zeros with 

1 

(6.4) [t~[ > logl~ 

to the sums in (6. 1). Using the well-known 6 fact that the total-number of non- 
trivial zeros of L-functions mod k with imaginary parts between r and r + 1 (r real) is 

(6. 5) <= cl4q)(k  ) log k (2 + lrl) 

this contribution is absolutely 

<=2ci, , ~'I logkn n~+To+ 1 n~+,o~ 
n ~ [logIOT1] 

and hence from (4. 14), (4. 16) and (4. 11) 
1 

Tlog (k logl~ 
< C 1 5  v 

[log T1] l~ 

5 We remark that owing to the symmetry of V the sums occuring in (6. I) are reaL 
6 See PRACHAR [1]. 
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and from (4. 2), (4. 5) and (1.5) roughly 

(6.6) < cl 5 -~l el (2 log~ logl T) < c 16T 0,4-2 

if only c2 in (1.5) is sufficiently large. If  ea = tr 1 + iq is a non-trivial zero of L(s, "Z) 
with z(ll) #Z(12) such that 

1 

ItQ[ ~ logl~ (6. 7) 

and 

is maximal, (6. 1), (6. 3), (6. 6) and (5.4) give the inequality 7 

V+V0 

l~176176 1 �9 max (n(x, k, 12)- n(x, k,/0} (6.8) log Y1 (v + Vo) ! x_-<r 

2 ~o # .o ( , 1 ( 2 - ~ i )  
~0Yi- ,,2e 0 

and analogously from (5. 5) a reverse inequality for 

min {n(x, k, 12) -n(x, k, ll)}- 
x<=T 

- - [ Q l [ ) v } - - C l T Z ~  

We remark that the definition of 02 gives owing to the functional-equatioa 

1 
(6.9) as ->~-. 

Further we shall use the known fact 8 that no L(s, Z)rood k vanishes for 

(6. 10) o > 1 Cls (t # 0). 
max {log k, log%k(2 + It[)} 

This means owing to (1.5), choosing cz sufficiently large that for our 0's 

C19 
(6. 11) tro-<_ 1 (log 2 TO % 

and owing to the functional-equation 

C19 
(6. 12) ue => (log 2 T 1 ) 4 / 5  . 

7 The double dash means that the summation refers to the non-trivial zeros, right to F, satisfying 
the inequality (6. 7). 

8 See e. g. PRACHAR [1], p. 295. 
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7. The integer v was restricted so far only by (4.' 5); we shall determine it exactly 
by Lemma II. Let us choose 

(7.1) m = P ~  Tl - log~ l . 
L Yl 

We shall distinguish among the zj 's as ,,first class zj 's" the numbers 

e y l ( ~ -  ~ri 

- - f o i l ,  
O 

and as ,,second class zj 's"  the numbers 

2 [01[. 
0 

Correspondingly we call ,,first class bj's", the numbers 

(o~oL~~ ~ 
1 (~(IO-z(12)) 0~o+1 

and ,,second class bj 's"  the numbers 
0 

qg(k) 0 ~0+1 

It  is trivial that max ]zjl = 1 among the zj 's of the first class; since 
J 

2 0e 10111 
er~ (T- ' I )  r,'e ey,Co_,, ) r,% 

= 2e 2 -----~---- I01 ~ 2 e  2 

we get, using (6. 12), (4. 2) and (1.5) 

2 e Ioll <2e l  -- (10g2T0 ~ < 1  
0 

if  only c2 in (1.5) is sufficiently large. Hence 

(7. 2) max IzjI = 1 
J 

is fulfilled. Owing to (6. 5) the total number n of  our zj 's cannot exceed 

1 1 

c2ok log 1~ T1- log (2k log 1~ T,) 

and hence owing to (1.5), choosing c2 sufficiently large, the inequality 
1 

(7.3) n < log 1~ TI" (log2 T1) 3 
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holds. Owing to (4. 3)--(4. 4), choosing in (1.5) c2 sufficiently large we obtain at 
once that in (3.2) we may choose 

2 

(7.4) x = l o g  3T1. 

Next we have to choose the indices R and R, .  Let 

(7. 5) ~2 = a2 + it2 

be one of  the non-trivial zeros of  all L(s, z),functions mod k with z(ll)r with 
the absolutely maximal imaginary part not exceeding L 1 and 

(7.6) C3 = 0"3 "{- it3 

that with the absolutely minimal t o for which 9 

(7. 7) (2L, -->)]t3l =>Z, + 1. 

Owing to (1.3) we have 
1 

0 " 2 ~ 0 " 3 ~  - .  (7. 8) 

Let then be 

(7. 9 )  
e yl(-o2-al) 

z h - - - 1 4 ~ [  
42 

eyl(o3-~r0 
(7. 10) z h , - - -  14t[. 

43 

8. We assert that all zj's of  the second class are absolutely 

(8 .1 )  <--lz~,l. 

Replacing their values, (8.1) is equivalent with 

t ~176 
43 e,~ (~ - -~ , )  _ 1 (8.2)  2 ~ -  --- 

for  all of  our 4's. In order to prove it we remark that choosing c2 in (1.5) sufficiently 
large we have from (1.5) { '} r lOLle 1 - ~ 0 - ( l o g 2 T 1 )  ~ < 1 

and hence from (7. 7), (1.5), (4. 2), (6. 7) and 14f->-�89 

or owing to (7. 8) 

\ 
c18 Yl / 
2 " max {!og k, log 4/5 (2 + ItQI)},] < 1 

max {log k, log 4/5 (2 q- lt0]) } 

9 The first, if cl in (3.11) is sufficiently large. 
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what proves owing to (6. 10) the assertion (8.2). Hence all z~'s with index <-_h I 
belong to the first class and B is defined by (3.4) (not by (3.6)). 

We have further to verify (3.3) and (3.5) for our choice (7.9)--(7. I0). Since 
from (7. 4) 

4n 2 
<2x = 21og-3-T1, 

it suffices to show owing to (4. 2), (6.9) and (7. 8) that  

O--Let log2 T1 - a a > 2 log- ~ T 1 
02 

and owing to a l  <= 1, that  
1 

(8. 3) 01 >21og-~ -T1 .  

But since (roughly) 
1 :=_1 

[01[ = ~ - ,  ]Q21- 1 + l o g l ~  

(8.3) follows from (1.5) if c2 is sufficiently large. Hence (3.3) is verified in our 
case. 

In order to verify (3. 5) we write it in the form (taking in account (7. 9)--(7. 10) 
and (7. 8)) 

1011 [~zt 1~3[ = m + n ( 3 + ~ )  

what is certainly true owing to (7. 4) and (4. 2) if 

( 1  , )  -~  
101[ I02I t~3( > l o g  ZT  1 

o r  
1 

[03]--]~2] > l o g  2 T1" 
loxI 10211031 

But this is true owing to (1.5), choosing c2 sufficiently large, since 

1o31- Ie21 >= 1 

1 1 1 
- -  - >  [ 0 1 ]  I0211031 - 4 L 2  ' =>2-" 

Hence Lemma 1I is applicable to our sum if the interval ( m + l , m - t - n ( 3 + ~ ) )  

is contained in the interval 

( logTa . o9 logTl~  
Yl - - l o g '  T1, Yl / 
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(so that the requirement (4. 5) be fulfilled). Obviously it is enough to show that 

and this follows at once from (7.3) and (7.4) if only cz in (1.5) is sufficiently large. 
Thus we have to estimate B in (3.4) from below. This is owing to (8. 1) a sum of  
the form 

";0 o ,,, (cooL1)- ~ R e X  (2(10 -2(12)) 2;~(~ ~) ~'0 + 1 

where the summation is extended to the non-trivial zeros of L(s, X) right to V with 
It~l =L~,  and also to some with 

1 

L1 < Ito[ <= log 1~ T1. 
Replacing this sum by 

1 (cooL~~ "~ 
q0(k-~ Re ~Y (2(ll)-~(12)) /_.,~(z) 0~o+1 

X Itel~Ll 

and taking in account (6. 5), the error is absolutely less than 

c21 log(kLi)~Oo'2"~ (2 L{ 
\ log L1/ 

owing to the definition of L1, COo and v o, if only e~ is sufficiently large. But then 
Lemma III gives the estimation 

(8.4) B ~ e  i L 2 - e i  \ logL1 / 

if only c 1 is sufificiently large. Hence Lemma II gives the existence of integers vl and 
v 2 with 

(8.5) log T 1 _ logO, 9 T < v < 1 ~ -  1 = ,  v2 <=l~ 
Yi Yl 

such that the expression D(v) in curly bracket on the right of (6. 8) (taking in account 
its reality and (7.3), (7.4), (1.5)) is for v = v 1 

( 

3-1 log- 1~~ Ti " (log2 T1)- 3 i f 1 
24 \ log T 1 + n \ 

Hence owing to the previous estimation 
2 

[z~l>21og 3 T1 

I logl0 TI "(log2Tl)3,, 
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we get using also (7. 9), (7. 1) and (1 .5)  

I vl. ~> 
O (vl) > e i ( - log 5- T1) ( log-  E T1) n (3 + - )  

-" 
>el(-log TOL/ Iml 

Putt ing it into (6. 8) we get for  the right side the lower bound  
V l y  1 " 

e 2  4 _ _ ( )  
(21~ l) v' "el ( -- log Y TI) - cl 7 T~ > ]/TI el - 21 log T,  loga T1 log2 T1 " - -  c 1 7 T 0 ' 4 2 "  

Taking in account  that  f rom (4. 18), (4. 16), (4. 11), (4. 14), (4. 5), (4. 2) and alsc 
(1 .5)  with sufficiently large e2 

log Y1 l~176 Y ~1+~0.I e ~i+~0 log Ti loga T1. 
< c 2 2 1 o g T l -  ~- l logT1 < e l  22 

and also f rom (4. 1) and (1 .5)  
1 

T i > Te i ( - l ogET)  

the first par t  o f  the Theorem follows at once. Analogously the second part,  choosing 
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