COMPARATIVE PRIME-NUMBER THEORY. VI

(CONTINUATION OF THE GENERAL CASE)
By

S. KNAPOWSKI (Poznan) and P. TURAN (Budapest), member of the Academy

1. In the previous paper V of this series we discussed oscillatory properties of
lﬁ(xa k: 11) - d’(x: k> 12)
H(-x’ ka ll) - H(xu k> 12)

and

for the general case
a.1 I, Z 1 mod k, L#Zlmodk

or shortly, for the case (/,, /,), with (1. 1). As one could except, the treatment® of
TC(_)C, ka ll) ‘TC(X, k9 12)

is much more difficult and we cannot cover the whole case (1. 1); what we can prove,
refers to such /;, J,-pairs for which the number of incongruent solutions of the
congruences

(1.2) x2=l,modk, x?*=lmodk

are equal. As easy to see, these cases make out a large part of all, in particular when
k is very composite.? And even in these cases we cannot obtain unconditional results;
we have to suppose that no L(s, y) functions mod k with y # y, vanish in the domain

(1.3 a>;—, [t] = 2¢, k10 (s = o+if)

with a sufficiently large ¢, and moreover also for

(1. 4) o 1= Ak)

L
=
with a positive 4 (k). More exactly we assert the

! We remind the reader that s(x, k, /) denotes the number of primes not exceeding x, which
are =Imod k, (/, k) is always 1. As in the previous papers, ci,... always denote positive numerical
explicitly calculable constants, further e.;(x)=e* and el(x) =e,_i(ex(x)), log: x =log x and
log.x =log., - :(log x), p always prime. Special attention must be given to the constants cs, ¢; and
¢2; ¢s must be sufficiently large, ¢, large in dependence of ¢s and ¢ large in dependence of ¢s and ¢;.

* As remarked in Knarowski—TurAN [3], for all (/, k)=1 the number of solutions of
x2=/mod k is either 0 or equal to that of x2 =1 mod k.
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THeOREM L. 1. If for a k the assertion (1. 3)—(1. 4) holds, then for

1
(1.5) T>max {ez (c,k29), ¢, (2@1 <m)+czk2°>}
and all (1,,1,) pairs with (1. 2) the inequalities’ '
(1.6) max {mn(x, k, I) —n(x, k, L)} =VTe, (_ 4408 Tlog, _T> ,
T'h=x=T log, T
L7 max {r0nk L) —n(x k 1)} =1 Te, (- salo8Tlog,T)
Th=x=T logT,
hold.

The proof of this theorem will be perhaps the most complicated in this series,
indeed a baroque one, the ideas being a suitable combination of those used in our
papers [2] and [3]. That the difficulties are not very much to be seen on the length
of the proof, is essentially due to the fact that we could take over from paper [3] of
this series the rather difficult assertion (9. 13) without proof. Again it seems to be
possible to deduce Theorem 1. 1 from Haselgrove-condition, i. e. that for a suitable
A =A() no L(s, y) mod k vanishes in the parallelogramm

(1. 8) O0<o<l1, [t] = A (k).
2. For the convenience of the reader we shall reproduce the necessary lemmata.

Lemma L. Under assumption (1. 8) for
1
2.1 T >max {63 , ex(h), e, (W>}
there is a yq with
1 1
2.2) Elogz rzylzl—ologzr

such that for all @ = o,+it, non-trivial zeros of all L(s, y)-functions mod k the
inequalities

2.3 = |arc e =c A®)?

@3 mE | E e T 1) log? k(T 1)
it—em

2.4 = rce2 =c Ak)?

2.4 A T IE S A+ 11,5 log? k2 [1,))

hold.

For the proof see our paper [1].
3. Further let m be a non-negative integer and

@G. 1) 1 = |zy|Z|zl=...=z],

3 Since in the course of proof 11 will be distinguished to /., it was necessary to state both (1. 6)
and (1. 7).
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so that with a 0<x§%

3.2) x=larcz;|=mn (j=1,2,...,n).
Let the index /4 be such that

4
(3.3) i

[Zh|§— —
¥iA
m+n<3 +~)
Vi

and fixed. Further we define for given b; numbers B and the index 4, by

¢
3.4 B= min Re > b;
h<&<hy j=1
if there is an index 4; with
2n
(3.5 |2, | < 23] =——F——
n
m+n <3 + ~)
et
and
£
3.6) B= min Re > b;

. h=¢&¢=n j=1
otherwise. Then we have the

Lemma L. If B=>0, then there are integers v, and v, with

/
(3.7 m+l=vy,, v2§m+n(3+%>

such that
2n

B n (12,,] )’"“ (3+3)

G.9) Re 35,7
i=1 2

72 ’Z_Zn—l-l p-
24 {m+n 3+;

2n
: o (5+2)
(3.9 ReSbhzt=__5 n (ﬂ)
j=1

C2n+1 T 2
24{m+n 3—!—;

and

67

For the proof see Theorem 4.1 in our paper [2]. Further we shall need the

Lemma III. For sufficiently large cs there is an w, with

(3.10) %c5k3§wo§c5k3
and with sufficiently large c,

3.11) ’ L, d&f ¢ k10

5*
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such that with an appropriate order of the given I, and 1,, and with a suitable integer
v, restricted by

(3.12)
the inequality

L _ _ L
logL,~ ° logL,

L

A re 2 Gy -7) zwf%ﬁl} (357)
holds.

For the proof of this lemma see our paper [3] ( see the corollary (9. 13) of Lemma
VI there).
Finally we shall need the

LemMA IV. There is a connected path V in the vertical strip %f o= z—j
symmetrical to the real axis, consisting alternately of horizontal and vertical segments
and increasing monotonically from — o to + <= such that on it for all L(s, x)-functions

mod k the inequality

L (s, 0| = coklog k@ + 1)
holds.

Since the proof is mutatis mutandis identical with that of Appendix III in the
book of one of us (see TURAN [1]), we shall omit it.

4. Next we turn to the proof of Theorem 1. 1. Let v, @y, L; and the order of
I, and I, be defined as previously and let T satisfiy (1. 5). We define further T by

r 2
C5k3 -61(——2L1).

Choosing in (1. 5) ¢, sufficiently large (in dependence upon c; and ¢;) (2. 1) is with
t=T, fulfilled and hence from Lemma I there is an y, with

@1 T, &

1 1
alog, T = yléTO—longl

4.2) %

such that for all g-zeros of all L(s, y)-functions mod k the inequalities

n
(4.3 o lare o2 Al
- o | 4k(l +12,1)¢ log® k(2 +12,])’
e'e" A(k)?
.4 m=|arc =4 L 10,)° log? K2+ 11,

hold. Let the integer v be temporarily restricted only by the inequality

T log T
@.5) 08Ty _jog00 7, =y="0811,
Y1 Y1
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If none of the congruences (1. 2) are soluble, the case is settled already in our papei'
[3]. If all solutions of the congruences (1. 2) are

4. 6) X=0ly, 8, ..., 0, mod k (nz=l)
and
(4' 7) x:_—_ﬁla ﬁZa (e ﬁu mod k:

respectively, then we start from the integral#

@8 D)= -Q;—J(is—) @), q)ik){ﬂx(lo 7(2))-
2)

(s X - Z Z(x(a,) x(ﬁ,)) (2s x)}

Inserting the Dirichlet-series expansions we get

log+ (e__woL )
n
4.9) J)= 2 A® -
néeWIwoLrﬂ (V + VO) !
n=l,modk
logv+vo (evJ’leL{()) logv+vo evylmoL;O
n
— A(n + A)n
R e s > B ey CE ]
n=l;modk n=e?2 VOJOLYO
n=zajmodk
i e"ylwoL;o
'g’ A logr™ n?
- n
P CFe
n=e 2 l/woLI’O
n=pimodk

Let us observe that the contribution of the prime-squares to the first sum and that
of the primes to the fourth one cancel, and analogous holds for the second and
third sums. Hence

log¥+vo evyleLl
(4.10) J(T) — lo il
oot BT !
p=iymod k
log®+¥ ewo Ly’
- 2 logp P
pée"ylmoLl"o (V + vO) l
p=limodk
Tog" ™ (™ w LY v ! N —
<y g (v—|—(v )i oL1) {(€7woLY)3 +k(e™ L)),

4 By (woLj0)* we mean always e{s log (wo L}0)} with the real value of the logarithm.
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Since from (4. 5), (4. 1), (3. 11), (3. 10) and (3. 12) we have
4.11) eV, LY =T,

the expression in (4. 10) is owing to (1. 5)

1

v+vg+1
log ™t T (T3 +kT4)<c8T3

(v +vo)!
v+ vy
<cgT? (e]ogT) logT.

Taking into account (4. 2), (4. 5) and (1. 5) with a sufficiently large ¢, we get

logv+Vo+lT

(4.12) <5 oo

logT, e logT

=5 log, T, log, T

and hence the expression in (4. 12} is

1
4.13) <cgT3 logT(log, T)***.
Since from (4. 5), (4. 2), (3. 12) and (1. 5) we have

logT, +2L2<21 logT

@.14) V=201 log. T

choosing ¢, in (1. 5) sufficiently large, (4. 13) gives that the expression on the right
of (4. 10) is

4.15) <cgTo4
The expression in brackets on the left of (4. 10) is
EVyﬂx)oL:‘o e a)oL:

log v+ve v
= j logx . d.(n(x, k, 1) —7n(x, k, 1))
0 -

and hence, putting
(4. 16) e”'\wo Ly L Y,
after partial integration

¥ logv-}-vo_
“.17 = [(n(x, k,L)—n(x, k, ll))dx(—logx TENY ) - j J'dei‘Jl_[,_JZ
h

with
1
(4.18) Y, def yrivort
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5. For the (trivial) estimation of |J;| from above we remark that the function
Y
. 1 . v+vy
G. 1 og x-log"*+> e
increases for 1=x= Y, and decreases for Y, =x= Y. Hence

logv+\’oi
5.2 |[J1=Y,logY, vl

Since from (4. 16), (4. 11), (4. 18), (4. 5) and (4. 2) we have choosing c, sufficiently
large in dependence of ¢,

1

Y, =T <logT

= lOgZT(elogT>v+vo

and hence (roughly)

we get as in (4. 12)

— (-, logTlog, T\
(5.3) 17, =e, <21 T )
Using again the remark in (5. 1) we have using (4. 11)
Iogv+vo l
J,=logY,- -max {n(x, k,L)—n(x,k,1,)}

(v+v )‘ x=T
and hence from this, (4. 10), (4. 15) and (5. 3) we get

Y
logv+vo_
(5.4 logY,- NCETATE Ifsa;({n(x k.L)—n(x, k 1)} = J(T)—c10T°4
and analogously
Y
logv+vo_
(5.5 log¥,- Lmin {r(x, k, ) —n(x, k, )} = J(T)+c10T°4

( +v 0)' x=T
6. Since obviously J(T) in (4. 8) can be written in the form

1 y1is v o Vo
) = o (e ) (nli %{2 (GO -7) =, x)} ds +

N
(2)

2v+ve %s v OL‘I’ % 1
+ J (es ) 212 (p(k){J pACICARFIChIE=S (s,x)}

)
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the application of Cauchy’s integral-theorem gives

— = S - 1(2) Siw M (eyg ) N

6. 1) J(T) = (k)

»

25 2 360)-1w) S L5 -<2e: )+

1 Ys
+ZEJW.¢(k) {S(X(h) X(lz)) (S X)} ds +
&)

2 [ sts | 22 eor-xen Koo a
V)

where V is given by Lemma IV and the dash means that the summation refers to
the non-trivial zeros right® to V. Using Lemma IV the two last integrals are absolutely

2

1
<y {Y5 5k logd k4 Y5 - 10"+ k2 log3 k}
and hence using (4. 11), (4. 16) and (1. 5)
(6.2) <, ,T041.10v+%!

if only ¢, in (1. 5) is sufficiently large. (4. 14) gives further from (6. 2) the upper
bound
(6. 3) Cl3T0’42.

We estimate roughly the contribution of the non-trivial zeros with

1
(6. 4) |t,| >1og!oT,

to the sums in (6. 1). Using the well-known® fact that the total-number of non-
trivial zeros of L-functions mod k with imaginary parts between r and r + 1 (r real) is

(6.5) =cy9(k) logk (2+]r])
this contribution is absolutely

Y VY
§2C14 21 logkn <W+2V+vu nv-i’vo-!-_l)

nz[logrOTll
and hence from (4. 14), (4. 16) and (4. 11)
1
Tlog (k 10g*°T)

Cis "
flog T1]_O

5 We remark that owing to the symmetry of ¥ the sums occuring in (6. 1) are real.
6 See PRACHAR [1].
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and from (4. 2), (4. 5) and (1. 5) roughly
6. 6) <c15T£ e,(210g%%T -log, T) < ¢ T %42
1

if only ¢, in (1. 5) is sufficiently large. If ¢; = &, +it, is a non-trivial zero of L(s, x)
with y(/,) #x(l,) such that
1

6.7) |t,|=1og!T,
and

evee

Q
is maximal, (6. 1), (6. 3), (6. 6) and (5. 4) give the inequality’
v+vo
logv+vo(Y)v+vo+1 _ -
6. 8) logY, )] in(ax {n(x, k, 1) —n(x, k, 1)} =
evio1 0o L1 [ errfe—aD) Y
= < o1l ) {(p(k) 2 (X(l1) X(lz)) Ze(x) ‘( 804,11) ( 0 |Q1|> +

Yo z 1 (7_"1) v
(k) 2 2(7(/3,) 1 (o )) Zn(x) ’(’030%1) <ZTIQII> }“6’17710’42

and analogously from (5. 5) a reverse inequality for
min {n(x, k, I,) —n(x, k, I,)}.

x=T
We remark that the definition of g, gives owing to the functional-equation
. o=
Further we shall use the known fact® that no L(s, y) mod k vanishes for
. C1g
(6. 10) c>1 max {log k, 10g4/5k(2 + ItD} (t¢0).

This means owing to (1. 5), choosing ¢, sufficiently large that for our g’s

- 1 . ("19__)_
e (log, T'y)">

and owing to the functional-equation

Ci9
(6.12) = o, T

(6.11) p

7 The double dash means that the summation refers to the non-trivial zeros, right to V, satisfying
the inequality (6. 7).
8 See e. g. PRACHAR [1], p. 295.
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7. The integer v was restricted so far only by (4.5); we shall determine it exactly
by Lemma II. Let us choose

logT
a1 m= [&— 1og°’9T1] .
Y1
We shall distinguish among the z;’s as , first class z;’s” the numbers
evile—o1
0 !QIL
and as ,,second class z;’s” the numbers
o)
2—— o4l

@
Correspondingly we call ,.first class ;’s” the numbers

OLV() Q
g (-7 22

and ,,second class b;’s” the numbers

(w L{’)
(k) ()C(ﬁ)_ ( _])) (:,0+1

It is trivial that max |z;] =1 among the z;’s of the first class; since

Yil5 01) 1 Y10,

evife—ay)
ZTI&I =2 ?

we get, using (6. 12), (4. 2) and (1. 5)

(5-e)

2—~—Q—|91|

1
<2e, { —< (logZTl)?} <1
if only ¢, in (1. 5) is sufficiently large. Hence
(1.2) max |z;l =1
j
is fulfilled. Owing to (6. 5) the total number » of our z;’s cannot exceed
L L
cy0k log'® T, -log (2k log!® T,)
and hcnqe owing to (1. 5), choosing ¢, sufficiently large, the inequality

1
(7.3) n<log!®T, - (log, T;)?
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holds. Owing to (4. 3)—(4. 4), choosing in (1. 5) ¢, sufficiently large we obtain at
once that in (3. 2) we may choose

2
7.4 x=log 3T;.
Next we have to choose the indices R and R;. Let
(7. 5) QZ = 0’2 +1t2

be one of the non-trivial zeros of all L(s, y)-functions mod & with y(/,) # x(,) with
the absolutely maximal imaginary part not exceeding L, and

(7. 6) Q3 = 03 +it3
that with the absolutely minimal 7, for which?®
() QL =) |t;|=L, + 1.
Owing to (1. 3) we have
(7. 8) O’2=O’3=%.
Let then be
erile2—a)
7.9 Zy=— 4|
Q22
eyiles—ao1)
(7.10) Z}u:_‘”—lQll-
Q3
8. We assert that all z;’s of the second class are absolutely
3.1 =|z,,].

Replacing their values, (8. 1) is equivalent with
IS
Q

for all of our ¢’s. In order to prove it we remark that choosing ¢, in (1. 5) sufficiently
large we have from (1. 5)

(-2
e (Tg—ﬂ) =1

(8.2 2

1
c -—
10L161 {—Tloi(logz Tl) 5} =Z 1
and hence from (7. 7), (1. 5), (4. 2), (6. 7) and |gl =1

2183

_Cs V1
€1 ( 2 max {logk, log¥s (2 + Ifgl)}>< !

R L (— o)
w2 max {log k, log*s (2 + |£,])} ? |

9 The first, if ¢ in (3. 11) is sufficiently large.

or owing to (7. 8)

IRES
€1
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what proves owing to (6. 10) the assertion (8.2). Hence all z;’s with index =h,
belong to the first class and B is defined by (3. 4) (not by (3. 6)).
We have further to verify (3. 3) and (3. 5) for our choice (7. 9)—(7. 10). Since
from (7. 4)
4n -2

—— <22 =2log 3T,
v

m+n(3-l——>
el

it suffices to show owing to (4. 2), (6. 9) and (7. 8) that

1 1 _2
'gi‘ el {Elongl (5“‘0’1)}>210g 3T1
and owing to o, =1, that
1
(8. 3) 2 2log 2T,
@2

But since (roughly)
1 L
|Q1|§73 los|=1+log!0T,,
(8. 3) follows from (1.5) if ¢, is sufficiently large. Hence (3. 3) is verified in our

case.
In order to verify (3. 5) we write it in the form (taking in account (7. 9)—(7. 10)

and (7. 8)) | 1 )
le1] < )>———n———el {Jﬂ(al_l)}
ool lesl) ., (3 +g> 2
V1

what is certainly true owing to (7. 4) and (4. 2) if

1 1 -L
|Q1|(@—“TQ3—E) >log *T,

or
losl—lezl _. -7
| ——=2= =log 27T,.
SR TRITA AR
But this is true owing to (1. 5), choosing ¢, sufficiently large, since
lesl—leal=1
1 1 1

_____é__’l =__
Gllesl = arze 191=3

Hence Lemma 11 is applicable to our sum if the interval (m +1,m+n (3 + %))

is contained in the interval

Y1

<10g Ty 10g%° T, log T1>
Y1
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(so that the requirement (4. 5) be fulfilled). Obviously it is enough to show that

n (3 + E) =1og®° T,
%

and this follows at once from (7. 3) and (7. 4) if only ¢, in (1. 5) is sufficiently large.
Thus we have to estimate B in (3. 4) from below. This is owing to (8. 1) a sum of
the form
" w Lvo
g Re (1) —7(1) S ‘10:3

where the summation is extended to the non-trivial zeros of L(s, y) right to ¥ with

|t,|=L;, and also to some with
) 1

=lt,|= log—0
Replacing this sum by
1

9@

and taking in account (6. 5), the error is absolutely less than

(2o L’y

Qv0+1

Re > (x(1)—x(12) Zlaw
x lii=Ly

12
cyqlog (kL)) wy-2" < e (210g 21>

owing to the definition of L,, wy and v,, if only ¢, is sufficiently large. But then
Lemma III gives the estimation

(8. 4) Bze, (12) —e (2.1 )1
) 30 log L, ’

if only ¢, is sufificiently large. Hence Lemma II gives the existence of integers v; and
v, with

1
@®.5) 08Ts _10g0o7, =v, =, v,=8T1

Y1 Y1

such that the expression D (v) in curly bracket on the right of (6. 8) (takmg in account
its reality and (7. 3), (7. 4), (1. 5)) is for v=v,

.
1 1 log1® T-(loga T )*

1 L
>?10g 10T1'(10g2T1)“3 -
. 24 <logT1-|—n<3+;))

< [Zh{ m+n (3 *%)
"\ -

Hence owing to the previous estimation

2
lz,|=2log 3 T,
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we get using also (7. 9), (7. 1) and (1. 5)
DOy =ex(~log? Ty) (%’—‘) (og 3Ty ¢ =
o
=e,(—log® Ty) l<_2—l—éz\— lall) .

Putting it into (6. 8) we get for the right side the lower bound

e
e? % . 0,42 YT log Ty logs Ty 0.42
(2lg,D)" er(—log>Ty)~¢y,T >VT1 € —21W — ¢y, %42,

Taking in account that from (4. 18), (4. 16), (4. 11), (4. 14), (4. 5), (4. 2) and alsc
(1. 5) with sufficiently large ¢,

vi+vy
Iogvl’l—vo(y vit+verl ) e vitvo log T, 10g3 T,
log Y, ] <y, log T+ v—llong <e, 22—162’?—

and also from (4. 1) and (1. 5)
1

T,>Te,(—log2T)

the first part of the Theorem follows at once. Analogously the second part, choosing
V= VZ .
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