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1. In  the previous papers I I  and I I I  o f  this series (see KNAPOWSKI--TURJ{N 
[2], [3]) we obtained rather far-reaching results on  the compar i son  o f  the distribution 
o f  primes =-1 and = l m o d k ,  or  shortly in the case (1, l)k. The difficulties o f  the 
general case, i. e. the case 

(1 .1)  (It, 12)g, It ~ 12 ~ 1 rood k 

are indicated in our  paper [4]; though  in this paper  more  or  less satisfactory results 
are given for the simplest case k = 8, it was ment ioned that  already in the next difficult 
case k = 5 the investigation o f  

(x, 5, 2) - re(x, 5, 4) 

cannot  be touched at present. In  the present paper  we are going to investigate the 
general case. As explained in our  paper [1] o f  this series, for  general k practically 
nothing was-known in this direction; hence also condit ional  results are o f  interest. 
Our  general results are condit ional ;  sometimes only Haselgrove 's  condition* is 
supposed, sometimes the ,,finite" RIEMANN--PILTZ conjecture, according to which 
no  L(s,  Z) rood k vanishes for  a sufficiently large cl => 12 for 

1 
( I . 2 )  a > ~ ,  [t[<=clk ~~ 

sometimes both,  or  what  amounts  to the same, no L(s,  X) with )~ #)~o vanishes for  

1 
a > ~ ,  ] t l ~ c l k  t~ 

(1.3) and 

1 
a =  -2-' [tl<=A(k)" 

Then putt ing as usual 

2 A ( n ) ~ t p ( x , k , l )  Z 
n ~ x  n<=x 

n = - I m o d k  n ~ l m o d k  

we assert the 

A(n) ~eJH(x, k, 1) 
log n 

t We remind the reader that this condition means the existence of an A = A(k) such that no 
L (s, Z) mod k vanishes in the parallelogramm 0 < a < 1, It[ <= A (k) (s = a + it). 

As in the previous papers, cl, e2 .... are always positive numerical, explicitly calculable 
constants~ and (l, k) = 1, e~(x) = ev - ~(eX), log~x = logv - l(logx). 
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THEOREM 1. l. Supposing the truth of the conjecture (1.3) with sufficiently large 
ca and with sufficiently large c2 

( I .4 )  T>max{e2(c2k2~176 

we have for l I # l 2 the inequalities 
log T log a T~ 

max {r lO-~b(x,k, 12 ) }>(Tex -44  I ~ 2 T  ,/ 
TI/3~x~T 

(1.5) 

and 

(1.6) - ( l~176 
max {Fl(x,k, l l ) -H(x ,k ,  12))>r 1 - 4 4  log2T J" 

T1/3~x~=T 

Since none of  ll and 12 are distinguished to the other 3, they can be changed. 
Hence each of the functions 

(1.7) ~(x, k, la) - ~(x, k, 12), 

(1.8) rt(x, ~, 11) - n (x ,  k, 12) 

has a sign-change in [T 1/3, T] whenever T satisfies (1.4). Denoting as in the previous 
papers by Uk(T, ll, 12) and Vk(T, 11,12) the number of  sign-changes of  the functions 
(1.7) and (1.8) for 0 < x -  <_ T, resp., this gives at once (like in our paper [2] of  this 
series) the 

THEOREM 1. 2. For 

T> max{ea (9el (2c2k2~ el (72ea (A~k)3 )+18eZk4~ } 

the inequalities 
1 

Uk(T, ll, 12) > ~ log 3 log2 T, 

1 
Vk(T, 11,12) -- 2 log 3 l~ T 

hold. 
Of course this gives for the first sign-change an explicit upper bound, depending 

only upon k; however in the paper VII of  this series we shall give such an upper 
bound supposing only Haselgrove's assumption, for ~O(x, k, 11)-  ~(x,  k, 12) at least. 

2. What can be told upon 

n(x, k, ll) - n(x, k, 12) 

in the general case ? I f  11 and 12 are such that none of the congruences 

(2. 1) x2=-la modk, x2=12 modk 

3 In the course of the proof (see (8.17)) we apparently make such a distinction. However, 
making it we shall be able to give ,,large positive" lower bound for max. and ,,large negative" upper 
bound for min. of H(x, k, l~)--II(x, k, 12). 
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(2.2) 

the inequality 

are solvable it follows at once from Theorem 1.1 (replacing c2 by a larger constant) 
that for 

1 40 T>max {ez(c3kZ~247 ) }  

(2.3) max {rr(x,k, ll)-Tr(x,k, 12)}>lfT-e,(-45 l~176 
T1/3~=x~r log 2 T 

holds. In the paper VI of  this series however we shall prove (2. 3) under the weaker 
restriction that the number of  solutions of  the congruences in (2. 1) is equal. For 
the sake of orientation we remark that for odd k the number of those /-residue- 
classes for which the congruence x 2 =_ l mod k is not solvable, is obviously 

_-> (1 - 2 -  ~(k)) ~ (k)  

(v(k) the number of different prime-factors of k) which certainly shows that for 
odd k ,,at least 25~o" of all cases are covered even by (2. 1) and the value of the 
number Nk(1) of incongruent solutions of x 2 ~ l mod k is for all (l, k) = 1 either 0 
or G(1).  

Does the Theorem in (2. 2)--(2.3) make the results of our paper [4] super- 
f luous? By no means. Putting k = 8 the constant in (2. 2) becomes most probably 
so large that the truth of  the corresponding RIEMANN--PILTZ conjecture cannot 
be verified by machines, so that in order to get in this case uncanditianal results 
special argument was necessary. 

3. As to the race-problem we have shown in our paper [2] that for a ,,dense" 
sequence of integers 

1 
(3.1) 7r(x~, k, 1) > - ~  ~(x3. 

However plausible we cannot prove at present the corresponding inequality for 
general ~z(x, k, 10) instead of ~(x, k, 1). What we can prove in this direction is the 

THEOREM 3. 1. Supposing the truth of (1, 3) we have for each (l, k ) = l  and 

(3.2) T>max{e2(e2k20),el(2e~(A~k)3)+c3k20)} 
the inequalities 

(3.3) r'I3~x~Tmax l I I I ( x ' k ' l ) - &  Fl(x)} 

and 

(3.4) 

> l / T - e a (  -441~176 2 T 

1 } ( l ogT logaT  ) 
min ~H(x , k , l ) -~ I I ( x )  < - ( T e l - 4 4  log2T ; 

TI/3~x-~-~ T [.~ 

the same holds for ~ instead of II too. 
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(3.5) 

and 

Mutatis mutandis the analogous statements hold for 

1 . 
FI(x, k, l) ----7~,, L1 x 

q~ t tO 

1 
(3.6) ~b (x, k, l) - ~ x 

too. However essentially new difficulties arise when trying to prove that for all 
(l, k) = 1 the function 

1 
(3.7) ~ (x, k, l) - q~(k) Li x 

changes sign infinitely often. This can be deduced supposing (1.3) from Theorem 
(3. l) mutatis mutandis if only the congruence x 2 =-/rood k is not solvable; most 
probably this is the case generally too. 

4. The proofs obviously reduce to that of  Theorems I. 1 and 3. 1; since the 
second follows that the first mutatis mutandis we shall confine ourselves to the 
proof  of  Theorem 1.1. This will be rather intricate. It would be plausible to start 
from an integral of type 

ds 

(2) 

as previously. Everything goes smoothly until one comes to critical ,,generalized 
power-sum" 

, ( eY 'q~  v 
(4. 2) Z (z(ll) - ~(12)) Z~(z) \ ~ - ] ,  

X 

where the last summation is to be extended over the non-trivial zeros of  all L(s, ~)- 
functions rood k in a domain, not depending upon v. The one-sided second main 
theorem (stated as Lemma I in our paper [2]) as well as its generalized form (stated 
as Theorem 4. 1 in our paper [3]) cannot be used as previously since the ,,coefficients" 
(2 ( /1 ) -2 ( / : ) )  have no more a non-negative real part and not even an ,,essential 
par t"  of  them can be singled out with non-negative real parts as in our paper [3]. 
As a remedy one might observe that changing the integral in (4. l) suitably one 
can arrange that the critical sum should assume the form 

(4. 3) z~ (~(11)--~(12)) Z0(Z) ~ \ Q 1/ 
X 

with an ~/1 > 0  independent of  v; now the coefficients are the numbers 

o 

(2(h) - 2 q 9 )  (4. 4) 
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and after appropriate choice of ~/1 one could obtain a (weak) positive lower bound 
G for a certain partial-sum of  

(4. 5) 

which offers hope to the smooth applicability of Theorem 4. 1 of our paper [3]. 
But to the applicability we need another partial-sum of  (4. 5) and the difference 
must be estimated so well that positive lower bound G should not be destroyed. 
In order to meet this new difficulty we modify the integral (4. 1) so that the critical 
sum assumes the form 

(4. 6) z~ (~( l , ) -Z( /2))  Ze,x) ~0+i 

with a suitable r/2 > 0  and suitable ,,large" positive integer v o so that the ,,coeffi- 
cients" are now the numbers 

C~ / 0"~ vo 
/ (4. 7) (2(l~) -~(12)) ~ \-~ ] �9 

Using the estimation (4. 5) v o can be determined by the application of  Theorem 
4. 1 (and even simpler) so that a certain partial-sum of 

(4. 8) Re z~ (~(/1)--~(/2)) Z~(z) ~ j  

could be sufficiently estimated from below. But owing to the rapid decrease of  the 
terms in (4. 8) the above mentioned difficulty by the application of  Theorem 4. 1 
to the sum (4. 6), to the determination of  v, disappears now. Hence the characte- 
ristic novelty of  the proof  is quite shortly the twice application of  Theorem 4. 1. 

In the proofs assumption 1.2 is not very deeply used; it seems to be withirt 
the possibilities to deduce Theorem 1.1 only from Haselgrove's conditions (1.3). 

As to a comparison of the results of the present paper to those obtainable by 
the classical methods see our paper [1]. 

5. In the proof  of Theorem 1.1 we shall rise some lemmata used also in the 
previous papers of  this series which we shall repeat without proofs to make the 
paper, as told, possibly self-contained. 

LEMMA I. Under Haselgrove's condition f o r  

{ (5. 1) z > max c 6 , e z (k), e2 

there is a YI with 

1 1 
(5.2) 20 log2 z <= Yl <-- ]~  logz z 
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such that for all 0 = ae + it~-zeros of  all L(s, g)-functions mod k the inequality 

arc 
A (~) 

~e7 k(1 + [tol)610g 3 k ( 2 +  ]tel ) 
holds. 

(For the proof  see our paper [2].) 
Further let m be a non-negative integer and 

(5.3) 

so that with a 0 < ~ ~ ~ -  

{5.4) 

Let the index h be such that 

(5.5) 

1 = Izll ~ lz21 ~ . . .  ~: Iz.I 

~ l arc zjl <= ~ ( j  = 1, 2 . . . .  , n). 

4n 
Iz,,[ _-> 

and fixed. Further we define B for given bj numbers by 

(5.6) B = min Re ~ bj. 
h ~ n  j = l  

Then we assert the 

(5.7) 

such that 

LEMMA II. I f  B>O, then there are integers vl and v2 with 

B 
(5. 8) Re ~ bjzs~ >= j=l 2n + 1 

and 

(5.9) Re ~ b i z ~  B 
j=l 2 n +  1 

n re+n(3 +~-) 

2 4 ( m + n ( 3 +  

n .+ . (3  

24 ( m + n  (3 + ~ ) )  

(For the proof  see our paper [3]). 4 

4 Here we need a slightly weaker form of this lemma as it is proved in [3] ; the index hi there 
can be chosen as n here. 
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Further  we shall need the s 

LEMMA I lL  Let m be non-negative integer, further z i ,  z2 . . . .  , z, with (5.3). Let 
h 2 be such that 

2n 
(5.10) Izh~[ > r e + n "  

Finally B 1 and the index h3 be defined by 

B l =  rain ~ '  b i I 
h 2 ~ < h  3 ] = i  

(5. 11) 

i f  there is a zh3 with 

n 
(5.12) [zn~[ < [zh2[ m + n  

and 

(5.13) B t =  rain ~ bj 
h 2 ~ n  j = l  

otherwise. Then there is an integer v 3 with 

(5. 14) m + l < = v 3 ~ m + n  

so that 

j=l j J = \ 2 4 e ( m + 2 n ) ]  B1 - -  . 

6. We shall need three more  lemmata. In  these and in the p roo f  we shall have 
beside e~ and ez also es, e9, . . . ,  some o f  them immaterial  but  some o f  them must  
be chosen properly.  These are c l ,  ez, eao and e l l ;  first elo must  be chosen suffi- 
ciently large, then e n large in dependence upon  eao, then e 1 large in dependence 
upon  e~o and el l  and finally ez in dependence upon  eao, exl and e~. First we shall 
make some restrictions upon  C~o; all these and the later ones are lower limitations. 
We have 6 for  x ~ 2  

X~ <z e8 
tel<=x 

and hence if no  L(s, X) rood k vanishes for  

1 
a >  ~ ,  I t l~x  

then 
[ 

1) [~(x ,  k, l) x < e 9 ~ 'x log  2 (6. kx.  
I 

s For this lemma see KNAPOWSKI [1]. This makes the so-called second main-theorem (see 
TURAN [1] or S6s--TURAN [1]) on the same way more elastic to applications as Lemma H the one- 
sided second main-theorem (see qhJRAN [2]). 

6 This follows at once from (4. 43) on p. 233 (with T=x)  of PRACnAR [1] (using (1.3) to that 
extent that L(s, Z) # 0  for 0 < s <  1). 

4 Acta Mathematica XIV/1--2 
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Then we chose 

(6.2) 
and require 

(6.3) 

so that 

5 

Clo =~max ((8c9)L e8~176 7 

c 1 >2-6Cio 

ciklO>-_Clo k3, 

owing to (6. 2) indeed. 
__t 

7 I . e .  f o r  x>--C~o l o g x < x  2~ 

we have 
1 

Z l ~  k2 -2r T6>O 
Cl0k3 < tl__---~Cl0k3 

n----lmodk 

i. e. no L(s, X) mod k vanishes for 

1 
(6.4) tr > ~-, It[<=Clo k3 

owing to (1.2). 
Next we state the simple 

LEMMA IV. Supposing only the truth of (1.2), for each (l, k) = 1 there is a prime 
P with P - I rood k such that 

(6. 5) (2<) 1 Clok3<=p<= clok3. 

Namely we may apply (6. 1) owing to (6. 4) with x=clo  k3 and x=�89 
this gives owing to (6. 4) and (6. 1) 

, Z A(n) C~o k 3 <2c91/~ok3.10g2(c~ok4 ) 
~o~3<.~ok~ 2 ~(k) 

n = - / m o d k  

i .  e .  

A(n) > c2~ k 2 - 2c9 ~/C-~o k3 log 2 (clok') > 
CI0 k3 <n~--~Cl0 k3 
n=_lmodk 

3 

C1~ ~ kl,9 > ~  k z > ~ -  �9 

owing to (6. 2). Since further evidently 

~ logp < 2~/x log x, 
p~t~x 

p~=-lmodk 
t tg2  
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7. Further we need the 

LEMMA V. Supposing for a f i xed  k the truth of  (1.2) only, then with the above 
Cio and some cl 1 ~ 3 (depending on Clo) for all l i , 12-pairs (l 1 ~/2)  the inequality 

1 co ~ 1 
(7. 1) max ~ ~ ( ~ ( l ~ ) - ~ ( 1 2 )  ) 2~(z)4 > logk  

ClOk3~to_<Clok 3 Ite[<=Cll k E 
3 -- -- 

holds (denoting again o~ =tre +ite}. 

For  a proof  we start from the formula s valid for x = Ix], X' primitive character 
m odk ' ,  y->_2, x ~ 2  

xo- 
(7.2) ~ ' A ( n ) z ' ( n ) - E o x +  2 o ( z , ) ~ + d o ( z ' ) + V o ( 2 ' ) l o g x  

n ~ x  [to l~=y 

X 2 
< z e l 2  Y (log x + l o g  2 k'y), 

where E o = for X' and do(x'), vo(Z') are independent of  x, y. Further 

if X (n) is an arbitrary character rood k and x'(n) is the equivalent character mod k" 
(k'lk) then it is known 9 

(7.3) ~ "  A(n)x(n ) = ~ '  A (n)z ' (n)--  X "  Z'(P9 logp. 
n~=x n<=x p*~<=x, pl k, pJfk' 

1 
Putting (7. 2) into (7.3), multiplying by - ~  (Z(II)-Z(12)) we sum over Z's. Then 

we obtain 

(7.4) 2 '  A ( n ) -  2 '  
n ~ x  II~X 

n=_li m o d k  n==_lzmodk 

1 
a(n)  + ~ z~ do(Z')(~(ll) --~(12) ) + 

log x .~ Vo (Z') (X (lt) -- Z (12)) + 

1 
< e l 2  x ItelaY ~ Y (log 2 x + l o g  2Icy), 

since the set Q (Z') is, as well-known, identical with ~ (~). 
Now we use (7.4) with x = P and x = P -  1 where P is defined in Lemma IV 

with 1 = li ,  say. Then the contribution of  the third sum on left is 0, that of  the fourth 

1 P x~ 
(-k) log ~ ~ Vo (Z') (~ (11) - ~ (12)) 

s See PRACF[AR [1] pp. 228--229, Satz 4. 4. The term do is owing to (4. 44) p. 233 of this book 
O (log k). 27 means that the term corresponding to n = x must be taken with coefficient �89 

9 See PRACI-IAR [1], p. 234. 

4* 
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and taking in account that 1~ vo(Z" ) is 0 or 1, this is absolutely 

P 1 
<_--log P - 1  :<3-" 

The contribution of  the first sum is �89 A(P) ,  that of  the second 

t 
l 

= ~- log 2 

0 
Hence choosing 

we obtain 

if ll  p _  1 - -  l 2 mod k and power of  2, 

otherwise. 

y = c : l k  r 

,75, 
Ll%l-~cllk 4 ~ I%1~cllk4 Q 

P 3 
1 (3 log  k - log 2 - 1) - 2c12 ~ (log 2 P + log 2 kP) > ~ log k - 

3 1 
- 0 , 9  8q2r176 ( 3 2 1 o g E k + l o g 2 c ~ o ) > ~ l o g k - l > ~ l o g k  

C l l k  
i f  only ( x) 
(7. 6) e i l ~ e l o  and el l  =~80c12elo log 2 e lo +  32max - -  . 

r~2  

From (7. 5) Lemma V follows at once. 

8. Let oJ --o~ o be a value for which (7. 1) is realized and we write shortly 

(8. 1) Cl kl~ ~efL1. 

Then we assert the 

LEMMA VI. For l 1 ~ l z  mod k, supposing only (1.2) there is an integer v o with 

( 8 . 2 )  L~ < L[  [_LI,16 
log LI = Vo -< log Ll' - 

so that 

[tol~Ll 

The hypothesis (1.2) and Siegel's theorem (see SIEGEL [1]) according to which 
each L(s, ~) rood k has a zero in the domain 

O < a < l  

(8.4) [t[ < log3 ( ; ;  ea(1)) ' 

~o See PRhC~a: [1], p. 224. 
~t p _  1 is even. 
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result that the non-trivial zero 01 with the minimal positive imaginary part  of  all 
L(s, g)-functions mod k with #(11) ##(12) has the real part  �89 , i. e. 

1 
(8. 5) 01 = ~ + it1. 

Let further 

02 = er2 + it2 

be the non-trivial zero with the greatest imaginary part 

(8.6) <- c 1 lk 4 

among all non-trivial zeros of  all L-functions mod k with x(lx) #Z(/2) and 

(8.7) 03 = o'a + it3 

the non-trivial zero with the smallest imaginary part _~ (cn  + 1) k* among the above 
mentioned zeros. I f  

( 8 . 8 )  C l > 2 - 6 @ 1 1  + 1) 

(which is meant as a lower bound for cl as told in 5) then 

1 
(8.9) a2 = aa = 2 "  

We write the sum under consideration in the form 

d~f 1 (L~~176 Y ~(Z(/i)-Z(/2))" ~', efz) - -  { - -  01} - c ~ 1 7 6  ~vo (8. 10) S 0 ~1 
( l%l-<-z,, 0 \ Q ] 

We shall apply Lemma III with 
L]-~, 

z j =  ex 
0 

(8.11) 
1 

bj = ~ (~(la) - ~(/2)) ~p (k); 

then assumption (1.2) assures that max [zjt = 1 is fulfilled. Let further be 
J 

(8.12) 

and 

(8.13) 

m=r l 
[ log L1J 

L~2 -01 
Zh2 - -  01 

02 

L~3 --QI 
(8.14) Zh3- 01. 

Oa 
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9. We have to verify (5. 10) and (5. 12). First we remark that 

LI ''~ 
n < c l 4 k L  1 log (kL1) cl5 (kL1) ' = cl5 \cll--~i~-.] (9. 1) < 1 05 

if  only cl > ~1o and hence 

(9. 2) 2n 2n 4L] '16 
- - < - - <  log L l  < c i 6 L ~  4/5, 
m +  n m I T 

whereas from (8.5), (8.9) and (8.6) 
1 

- -  2 / 5  

(9.3) IZh21 m 2 <1 = __  >_ >- L~2I 5 

02 4- 1 -- 3ell 
c l l k  + ~  

and hence if 

( 9 . 4 )  c~I5 ::>_ 
3ell el6 

(which again is to be interpreted as a lower bound for cl as told in 5) then (5. 10) 
is verified indeed. As to (5. 12) we remark that from (1.2), (8.13) and (8. 14) it 
follows taking in account (8.9) 

IZh21--1Zh3l = Iml I~1 

whereas from (9.2) 

m 

Iv3 I,) ~ 2-tb.k~ + 1 (c,, + 1)k 4 )  > 
1 1 c 215 

4c21 k 4 = 4c21 " L [  2/5 

n <C16L14/5 
m + n  2 

and hence if 

(9.5) c 2/5 >2C16C21 

(again a lower bound for cl) then (5. 12) is verified too. Before applying Lemma III 
we need a lower bound for B 1 . Owing to the definition of  B 1 is 

(9. 6) B1 _ 1 ~ )  ~ (~(h)-~(l~)) X~ ~', 
i tel~(z ) ~ -  

where all H00 ' s  are between (el 1 - 1) k 4 and (ca 1 + 2) k 4 if only 

C l l  > C i 7 "  

Replacing in (9.6) however the inner sum by 

Itel~cilk4 
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the total-error cannot exceed absolutely 

1 / ~  < ~  co~/2 
"-~f~) 1 log (c 1 l k 4) (k) (c~,-l)k4~lt~l~(ell+2) k4 Q I :  ~8 @11 -- I) k4 

i .e.  using wo~elok 3 
, 1/e~o <4e~ 9 t /e~ologe~ logk 

(9.7) <c19(41ogk +logcll ) cxlkS/2 cH k5/2 . 
Choosing now caa so that 
(9.8) 4 c191~ < _ _ ~ 1  

cat 81/Cxo 
we get from (9. 8), (9. 7) and Lemma V 

(9. 9) IBm] > 8 log k. 

Hence the application of Lemma IIl gives the existence of  an integer v o with (8. 2) 
so that 

l 1 . : >  (9. lO) Z 
[ t ~ [ ~ L  1 ~ v ~  

klQat]  8\24e(m+2n)J \ 2 ] " 
Owing to (8.12) and (9. 1) we have 

n 1 

24e(m + 2n) - 24e(L~ + 2L] '~6) 

and hence the last but first factor in (9. 10) is 

>_kl L; 
200 

(9. 11) ~ L ?  z >el(-3L~'161ogL1) 

if only e 1 >czo. Further from (8.4), (8~ 5) and (8.2) we get 
L~ 

if only c 1 > z t .  
Finally using (9. 3) and (9.4) we get c 1 >c22 

LI 2 LI,I6 L z LI , I  6 

/ Izh~l ~ " + " > f e ~  Is L-2IS)'~ ( e'6 Li-Z/S~ i~ ~ > e 1(-0,41L~) 
~, 2 } ~,6cll ~ ) > \ 2 -  ,] 

Collecting this, (9. 14), (9. 13) and (9.11) we get for our sum in (8.3) the lower 
bound 

1 {L~ L~,16 ~ e ~ - - 3 c , 5  logLl)>el(~~L2x) 

indeed if only cl >c23. 
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We shall use Lemma VI in a bit different form. We may observe that the sum 
in (8.3) is real; hence changing la and 12 if necessary we obtain that for an integer 
Vo satisfying (8.2) we have 

 oo, o o 
(9. 13) 1 Re X (~(ll) -~(12)) .r Q~o+l ->et L2 " 

~ ( k )  ~ i,~r=~,k~ 

Finally we shall need the 

1<: .<:2: 
LEMMA VIII. There is a connected path V in the vertical strip -~ = a= s 

symmetrical to the real axis, consisting alternately of  horizontal and vertical segments 
and monotonically increasing from -oo  to + ~, on which for all L(s, z)-functions 
rood k the inequality 

L " ( S ,  Z) "<: c24 l~ 3 k(2 + It[) k 

holds. 

Since the proof follows mutatis mutandis that of the Appendix III of the book 
of one of us (see TURAN [1]) we omit it. 

10. Now we can turn to the proof of Theorem 1.1 ; it will suffice again to prove 
(1.6). Let tOo, Vo, L1 and the order of ll and l 2 defined as previously and T satisfy 
(1.4). We define further T 1 by 

T 
(10. 1) T1 d~r et (_ 2L 2) 

clo k3 

with the previously mentioned Clo. Choosing c2 (in dependence upon Clo as told 
in 5) sufficiently large it follows from (1.4) that z = T~ satisfies 5. 1 and hence 
Lemma I is applicable. This gives the existience of a Yl with 

(10. 2) 

so that for all ~'s 

1 
l log2 T1 ~= Yl <-- ]~  log2 Ti 

e ~teh ~ c 7 
(10. 3) ~z => a r c - -  

A (k) 3 
k(1 -I- l tol)  6 log 3 k(2 + Ito[) 

holds. If  finally the integer v is at present restricted only by 

(10. 4) log T1 log ~ T 1 ~= v <= log T1 
)'a Yl 

we consider the integral 

00.  5) J(T) -- l f ( ~ )  ~(~176176 l t _ _ L' } 27ri sV0+ i �9 ~.~ ~ (X(I1)--Z(12))~-(s,z) ds. 
(2) 

Zl  
Replacing ~- (s, Z) by its Dirichlet-series, the well-known integral,formula (d pos. 
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int.) 

gives 

J ( T )  = 

or putting 

(10. 6) 

also 

(10. 7) 

d s = .  

2rci(2) otherwise 

logv+~0 cooL~ ~ log,+,0 cooL~ ~ 
n n 

Z A(n) -- Z A(n) 

n=_f2 mod k n =~12 mod k 

o~oL~O eVY, der Y1 

YI 

, ;( J(T) - (V+Vo) ! logx log~+~o d(II(x,  k, la) - 1-I(x, k, 12)) = 
1 

Yl 

f ( _ 1 {H(x ,  k , / 2 ) -  17[(X, k, ll)}" log x log ~+~0 dx. 
(v + Vo) ! 

1 
1 

11, Since the function log x log v+~o Y_! increases for 1 ~=x~= y~,+,o+i and then 
X 

decreases, we split the last integral into 

(v + Vo) ! 
(11. i) 

(11.2) 

Evidently 

(v + Vo) ! 

1 
y~'+vo+ 1 

dej J 1  

1 

Y1 

f def 1 �9 i 2 �9 

1 
]r~ +Vo+ 1 

1 ( V + V o )  v+~~ 1 
�9 y~+vo+x log~+~o+ly1" ]JII<(V+Vo+I)!  V + V o + l  

From (10. 4), (8.2), (10. 1) we have for cl >c25 the estimation 

(11.3) Iri <= eioka L 110gLx T1 -- Ti.clok3.e zL2 = T, 

from (1.4), (8. 1) and (10.1) for 

log (Cxo x3) 
c 2 > max -+To , c2 > 3c2 

x ~ 2  X 
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the inequality 
T 

(11.4) T1 > logT ' 

further from (10.4), (10, 2), (1.4) and (11.7) 

101ogT~ log~ 1>2 l~ logT 
(11.5) v> log 2 T~ log2 T1 >logz T" 
Hence 

and 

and thus 

1 1 

yv+vo+l v 
, <YI < logT 

( ) C) .+.o+, I 
~+~~ log~+~~ Y1 <2  logYa -< 

(V+Vo+ 1)! V+Vo+ 1 

+ 0+ 

<e1(41 logTlog31og2 T T)  

(I 1. 6) IJll < e~ [~42 log T log3 T/xi 

Further from (11.2) we get, using also (11.4), 

(JogY~)v+vo+l (_ ~+~ )v+~o 
(11.7) J2<=max(H(x'k'll)-H(x'k'Iz)}'x<-7" (V+Vo+l) T. \V+Vo+ 1- 
and 

(11.8) J2>=min{rl(x,k, lO-II(x ,k ,  I2)} (l~176 V+Vo )~+~o 
x<_-r (V+Vo+ 1)! V+vo+l  " 

12. Lemma VII and (10. 5) give 

(12. 1) J(T) - 1 Zz  (2(ll)-Z(12)) ~(z)  ~0+1 

I f(e;1')" (ogoL~~ I {~_f L" } 2hi s,o+' q~(k) (2(I,)-2(12))~(s,)0 ds, 
v 

where the dash in the sum means that the summation is extended only over the 
zeros right to V. The last integral is absolutely 

2 2 

.< 5 2 r e  ~-vya c26k log 3 k.(~ooL~~ Y 

and hence owing to (1.4), (10. 2), (10. 4), (8. 1) and (8. 2) 

(12.2) < c27 T ~ 
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Further, taking in account that the number of  all zeros of  all L(s, z)-functions 
mod k with imaginary parts between r and r § 1 is 

(12. 3) <c28rp(k) log k (2 + Irl), 

1 

the contribution of the zeros with 1tol >log  a~ T t to the sum on the right of  (12. 1) 
is absolutely (roughly) 

o) ~ L~ ~ e vy, 
3c28 logkn n~o+ x n ~ < 

n = [log i~- T1] 

1 
T 09 l ~  ,ro,4s 

owing to (10. 4), (10. 2), (10. 1) and (1.4). Hence denoting the remaining sum on 
the right of  (12. 1) by Z(v) and collecting the previous estimations we get 

(log Yt) ~+~0+I 
(12.4) 

(V+Vo+ 1)! 
and 

(log I"1) ~+~o+1 
(12.5) (V+Vo+l ) !  

max {H(x, k, ll) - 1-I (x, k, 12)} > Z(v) - c3t T ~ 
x~=T 

min {H (x, k, l t ) " - I I (x ,  k, 12)} < Z(v)+ cat T ~ 
x~=T 

13. Now we estimate Z(v) in (12.4) and (12. 5) by proper choices of v from 
below and above, resp., by aid of  lemmata I, II and VI. Let 04 =o'4 + #4 be one 
of  the zeros o fL(s ,  )0 z(lO r with 

t 

(13.1) 

for which 

(13.2) 

We write Z(v) in the f o r m  

(13.3) 

m 

It el <= log 10 T 1 

ey le  
-~- = maximal. 

1 (eYla4~v { 

[to] <-- l o g l O  T 1 

0 r ight  to V 

(cooL[~ ~ . (eYl(~_-~'~ [04[)v der ( e Y l ~  v 
e ~~ " \ 1041 ,/ 2 1 ( 0 .  

The role of  zj 's are played by the numbers 

eyl(Q-~4) 

0 
- - [ 0 4 I  

(and hence owing to the definition of 04 the condition max 1zil = 1 in Lemma II 
] 
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is satisfied) and that of  bj 's  by the numbers 

(~ooLI~ ~ 
�9 

Then 
eit ~a 

arc zj -- arc - -  

and hence from (10. 3) a lower bound for [arc z~l is 

A (k) 
C7 1 1 

1 

k(1 + log '~ T,) 6 log a (2k log '~ Ta) 
which owing to (1.4) 

0 3 . 4 )  

Let further 

(13.5) 

As to the index h let 

03 .6 )  

2 

> l o g - 5  T1 def •. 

m=Fl~ Yl l~176 

eyl(0s - a4) 

z~ - - - ] 0 4 [ ,  
05 

where 0s -- �89 + it5 is any zero of any L(s, Z) mod k with 

(13.7) L 1 - 1  <_- t s < L 1 .  

The number of  zi 's is owing to (12. 3) and (1.4) 

1 1 1 

<= c32tc log 1~ TI" log k(2 + log 1~ T1) < log 1~ Ta'(log2 T1) 3 

if c2 is sufficiently large in dependence of cl and c10. Hence 
1 

(13.8) n < log 1~ T1 .(log2 T 0  3. 

We have to verify (5. 5). Since 
1 

4n 4 log 1~ T1 (log2 T~) 3 
(13.9) < 

m + n  3 +  . 2 log2T1 
and 

erl ~--~4 e-~-Yl 1 1 1 1 
(13.10) [Zh]- [05] [04[> 1/2+L~ 2 3 3clk x~ log 2 ~  1~ 

if only c2 is sufficiently large in dependence upon cl and Clo. This and (13.9) prove 
(5. 5) indeed. 

14. In order to apply Lemma II we have to estimate B of this lemma from 
below. This will be done by Lemma VI or rather by its corollary (9. 13). This gives, 
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the estimation 

(14. 1) B ~ el ~ L~ 1 (r o L~ ~ 
Ll-l_-<t,ol Iql ~~ 

(1L~)_ca3log(kL1) ~2~o>el(1L~) [" 2L~ "~ [ 1 L 2 ) : >  1 >e I . ~~ - - e , ~ j > e l ~  ~ 

if c 1 is sufficiently large in dependence upon Clo. Finally we have to verify that 
the interval, given in (5.7) for v 1 and Vz is contained in (10. 4). The first part of 
this assertion follows from (13.5) at once; further from (13.5), (13.9) and (13.4) 
we have 

(14. 2) m + n 3 + --<_ log ~ T1 + 
Yl 

1 2 log Ti 
+ log l~ TI (log2 T1) 3 (3 + ~ log ~ T1) < - -  

Yi 
indeed if and only if c2 is sufficiently large in dependence of c 1 and qo-  Hence 
choosing v =v I we~get from (13.9) and (14. 2) 

1 / '  ~ 2  log10 T 1 qog2 T1)3 
1 - - 3  Yl 

Z I (v l )>  ~ log lo Ti (log2 TI) / 26 10-og T,) 
re+n(3 +~-)  1 Yl(2 - -  ~ "v l  / i n ( 3  + ~-) 

.(]zhl~ " >el{_210gl~Ti.(log2T1)5}.( e ) (~-) 
\ 2 2  2[051 [041 �9 

or by (13.11), (13.9), (13.4), (13.7), (13.6), (10.4) and (1.4), choosing c2 suffi- 
dent ly  large, 

(14. 3) Z,(vl)>ei(--2 ! l~176  Ti ) Yl ( ~ - -  (Y4' V1 ~ g 2 ~  .e  ,2 , 1041,,. 

Hence from (13.3) and (10. 4) we get 

v~y._..~ ( logTilogzZl)>l/~_~lel(_221ogZllog3Ti) Z(vl) > e  2 .el _ 21 log2 T1 log2 T1 " 

We get from (14. 3) and (11.4) 

Z(vi)  >l/T-el  ( - 2 3  logTlog_3 T~ 
log 2 T ] 

and analogously 

Z(v2)<_]/~-ei(_23 log Tlog3 T ) .  
log2 T 

Going back to (12. 4) and (12. 5) this gives 

(14. 4) max {H(x, k, li) - YI(x, k, 12)} :> 
x<=T log mo   ) 

log2T (va +vo+ l)!l~176 
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and 
(14. 5) min {H(x, k, 11)- Yl(x, k, 12)}<_-- 

x ~ T  

log Tlog 3 T'~ . . . .  
<=-~'T-el -23  lo~g2T ] "(vz-t-v~176176 

/ 

Since from (10.6) 

(14.6) (vl+vo+l)!log-~'-~o-lyi>(vl+v~176 �9 = 

e log Y1 

= ( vl + Vo+ 1 )~,+~o+ 1 > 
e(log COo+ Vo log L 1 + hYl) e(log COo+ Vo log L1 + hYl) 

~--Vl--V0-- 1 
1 , 

\ Vl Vl q- ] ~  log2 

we get using (7.1), (5.7) and (13.5) 

1 l og  (Clo k3)  
1 < < 1  - -  og  CO O = 

vl log T1 
9 log 2 Ti 

and using (8.2), (5.7) and (13. 5) 

Vo log L 1 < 2L2 < 1 
vl (9 logT1 ) 

log2 T1 

if only c2 is sufficiently large in dependence upon cl and Clo. Hence from (14. 6) 
and (1.4) 

(v 1 + v o + 1)! log -v,-~o- 1 I11 > (log2 T) -vl-v~ 1 > 

20 l ~  >e1 ( -21  logTlog3T),  

choosing c 2 sufficiently large in dependence upon c 1 and r Similarly 

log T log3 T'~ 
(v2+vo+l)!l .og-~2-vo-lyl>e 1 -21  l ~ 2 T  ]" 

Putting these into (14.4) and (14. 5) Theorem 1.1 follows at once. 
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