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( P A R A D I G M A  TO T H E  G E N E R A L  C A S E ,  k =  8 A N D  5) 

By 

S. KNAPOWSKI (Poznan) and P. TURAN (Budapest), member of the Academy 

1. In  papers  I I  and  I I I  o f  this series 1 (see KNAPOWSKI--TUR~.N [2]-- [3])  
we t rea ted  systemat ical ly  the c o m p a r i s o n - p r o b l e m  o f  the residue-classes 1 and  
l rood k. N o w  we turn  to  the  much  more  diff icult  general  case. In  this case ou r  
results are very far  f rom being complete .  As an in t roduc t ion  to the fol lowing analysis  
as well as to t rea t  a case which our  me thods  can settle to a cer ta in  extent  comple te ly  
and  wi thout  any  conjectures,  we shall  t rea t  in the  pape r  in extenso the case k = 8. 
As  to the compar i son  o f  the residue-classes 1 and  l rood 8 the s t rongest  result  is  
given by  the Theo rem 5.1 o f  the pape r  I I  since the T he o re m 2. 1 o f  pape r  I I I ,  which 
would  give much  s t ronger  local isa t ion,  is no t  app l icab le  to our  cases. In  the r ema in ing  
cases however ,  when 

(1. l )  l 1 and  l E a r e  a m o n g  3, 5, or  7 m o d  8 

we shall  p rove  theorems  o f  a lmos t  the  same strength.  M o r e  exact ly we assert  the  

THEOREM 1. 1. For T > c  1 and for all pairs ll ,  12 with 11 7&lz among the numbers 
3, 5, 7 we have 

(1 .2)  max  (~(x, 8, l t ) - n ( x ,  8, l E ) } ~ . t / T e l ( - 2 3 1 ~ 1 7 6  
Tl/3<=x<=~r lOgE T " 

Since none  o f  l l  and  l E is d is t inguished to  the other ,  the same inequal i ty  ho lds  
in terchanging l 1 a n d / 2 .  This  Theo rem 1.1 is obvious ly  in the d i rec t ion  o f  P r o b l e m  3 
fo rmula t ed  in the p a p e r  [1]. As an  easy consequence  o f  Theorem 1.1 we fo rmula te  
the E 

THEOREM 1. 2. For T > c  I we have the inequality 

(1 .3 )  Ws(T, ll , /2) > c 2  log2 T 

i f  only 11 ~ 12 and among 3, 5, 7. 

Accord ing  to Theo rem 1.1 o f  pape r  [3] we have, again  wi thout  any  conjectures ,  
the  inequal i ty  

(1 .4 )  Ws(T, 1, l) > c a log  4 T 

1 As in previous papers of this series e~, c2 .. . .  are always positive numerical, explicitely 
calculable constants. I is always supposed to be prime to the modulus e~(x) = e~ - a(e ~) and logvx ---- 
-~ logv - ~ (log x). 

2 We remind the reader that wk(T, l~, ID stands for the number of sign-changes of ~(x, k, Is) - -  
--  n(x, k, 12) for 0 -< x ~ T. 
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which is much weaker than (1.3). Whether  this is inherent with the matter  (which 
we  think is the case) or  not,  we cannot  decide at present. 

2. The fact that  the congruence 

(2. 1) x z ~ - l m o d  8, l ~  1 rood 8 

is no t  solvable gives at once that  Theorem 1 .2  is a simple consequence o f  the 

THEORE~ 2. 1. For T > e  4 and for all pairs 11 , 12 with I i r  among the numbers 
3, 5, 7 we have 3 

(2 .2 )  m a x { H ( x ,  8, l O - H ( x ,  8 , 1 2 ) } > ~ T e ~ ( - 2 3  l ~ 1 7 6  
r'/3<=x log 2 T " 

A slight modificat ion o f  the p r o o f  will lead to the 

THEOREM 2. 2. For T > c  4 and for all pairs ll ,  12 with l 1 ~12 among the numbers 
3, 5, 7 we have 

(2 .3 )  max {~b(x,k, l l ) - ~ ( x , k , l ~ ) } > l / T e ~ ( - 2 3  l ~ 1 7 6  
T1/3~x~T log 2 T " 

As an immediate  corollary we have the following 

THEOREra 2. 3. For T > e  4 and for all pairs l 1, l 2 with l 1 ~ l  z among the numbers 
3, 5, 7 we have the inequalities 4 

Us(T, l 1 ,/2) >" e5 log2 T, 
(2 .4)  

Vs(T , l~,/2) > e5 log2 T. 

3. In  the case k = 5 the situation is somewhat  different. Again  Theorem 5. 1 
f r o m  the paper  [2] settles the cases 5 

(3 .1)  (1, 2)5, (1, 3)5, 

fo r  the case (1, 4)5 however the Theorems 2. 1 or  2 . 2  f rom the paper [3] furnish a 
much  stronger result. The case (2, 3)5 could be treated with the same results - -  apar t  
f r o m  the occurring constants - -  as given in the case k = 8 by the theorems of  this 
paper ;  since only slight readjustments are required we shalI confine ourselves to 
indicate them by footnotes.  However  the remaining cases 

(3 .2)  (2, 4)5, and (3, 4)5 

present an unpleasant  (or pleasant?) surprise. The complete analoga o f  Theorems 

A(n) 
3 We remind the reader that H(x, k, l) denotes the sum ~ n and in the next 

n ~ x ,  n =-l rnod k log 
theorem ~p (x, k, 1) the sum ~ A(n). 

n ~ x , n = _ l m o d k  

4 We remind the reader that Uk(T, ll, i2) and Vu(T, l~, 12) denote the number of sign-changes 
of  ~0 (x, k, 11) --~o (x, k, 12) and/ / (x ,  k, l ~ ) - / / ( x ,  k, 12) for 0 < x ~ T, resp. 

5 The case (l~,/2)k means throughout the whole series of these papers the comparison of the 
progressions ~l~, resp. ~-- lz rood k. 
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2. 1, 2. 2 and 2.3 of  this paper could be proved without essential changes; we shall 
not do it. But as to 

(x, 5, 4 ) -  zr (x, 5, 2) 
(3.3) ~z (x, 5, 4 ) -  ~ (x, 5, 3) 

our methods do not work in their present shape, even supposing the truth of  PdE- 
MANN--PILTZ conjecture; 6 the reasons for it will be explained in the papers V and 
VI of  this series. 

4. All in all we have to prove only Theorem 2. 1 in all details. The proof  is in 
principle similar to that of Theorem 3.2 of  paper [3], both proofs reduce the dif- 
ficulties analogously to one which can be surmounted by a proper use of Lemma II 
of  this paper (_=-theorem 4. 1 of  paper [3]). The inconvenient way however, the 
lower bound in Lemma II depends upon the bi's, gives some indication where this 
last difficulty lies and at the same time gives a plausibility to the fact that this 
difficulty can be surmounted in different situations only on entirely different ways 
(as it is the case here and later). 

Theorem 2. 1 contains three statements; it will suffice to treat one of them, 
e.g.  the case 

(4. 1) (3, 5)s 

in the notation of  (3. 1). 
A further moment in the proof  is a certain configurational statement concerning 

the early zeros of  the L-functions rood 8 which we could surmount sofar only by 
some numerical data, kindly furnished to us by C. B. HASELGROVE. They are the 
following. For  the character 

(4. 2) xl(n) = 1, 1, - 1, -- 1 rood 8 

L(s, )~1) vanishes for O(1) = 0o)(Xl) = �89 +i.4,89.. . ,  for 0 (1) and apart from these 
L(s, ;(a) does not vanish for 

(4. 3) 

For  the character 

(4.4) 

L(s, )~2) vanishes 

0 < a < l ,  ] t [~7 .  

z2(n) = 1, - 1 , 1 ,  - l  mod 8 

for 0 (2) = 0(2)(X2) = �89 +i-6,02.. . ,  for 0 (2) and apart from 
these L(s, g2) does not vanish in the rectangle (4. 3). For  the character 

(4. 5) z3(n) = 1, - 1, - 1, 1 rood 8 

L(s, )/3) vanishes for 0(3) = 0(3)(23) = �89 +i.3,57. . . ,  for 0(3) and apart from these 
L(s, )/3) does not vanish in the rectangle (4. 3). Further data of HASELGROW and 
Mr. D. DAVIES show a similar situation for k]24 and k = 5, respectively. The mentioned 
configurational statement is in the case (4. 1) that there is a positive (numerical) ~1 
such that the rectangle 

(4. 6) 0 < a - < l ,  ]t[_--<~t ( s=a+i t )  

6 We  remind  the reader  tha t  this conjecture asserts  tha t  no  L(s ,  Z) funct ions vanish  in the  
half-plane ~ > �89 (s ~ cr + it). 

3 Acta Mathematica XIV/1--2 
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contains a unique couple of  (complex-conjugate) simple zeros 7 

(4. 7) ~', 4" 

of  L(s, Z1) L(s, ~(2) and that for all other non-trivial zeros of  L(s, Z1) L(s, Z2) the 
inequality 

(4. 8) lel > le'l + ~2 

is fulfilled, again with a positive (numerical) ~2. In order to make our proof  for the 
case (4. 1) easier adaptable to the other cases as well as to the case k = 5, say, we shall 
not use the Haselgrove-values, only ~ and c~ 2. (However in the paper VIII we shall 
need his data to a much larger extent.) 

Mutatis mutandis we may assert the following Theorems. 

THEOREM 4. 1. For T>c4 and l= 3, 5, 7 we have 

I 1 } ( l o g T l o g 3 T )  
max n(x, 8, l ) -  ~ n(x) >I/T--el - 2 3  log2 T 

T1/3~x~T~ 
and 8 

min ~n(x, 8, l ) - 1 n ( x ) } < - - ~ T . e ~ ( - - 2 3 1 ~ 1 7 6  
TI/3<=x<=TL log 2 T 

Further the 

THEOREM 4. 2. For T>c4 and/=3,  5, 7 we have for the number ZI(T ) of sign- 
changes of the function 

in 0 < x -<= T the lower bound 

1 n(x) (x, 8, l ) - ~  

c 5 log 2 T. 

For  a comparison of  our above-stated results with the ones, attainable by older 
methods, we refer to our introductory paper [1]. 

5. In order to make, as told in paper I, this paper as self-consistent as possible, 
we shall quote explicitely our two main tools here, proved in papers [2] and [3] as 
Lemma I and II, respectively. 

LEMMA I. For T > c  6 there is a Yl with 

(5. 1) ! l o g 2  T ~ y l  <-- ~0 log 2 T 
20 

7 Necessarily on the line a = �89 
Xdv c 

8 The same holds replacing z~(x) by / 1 - -  v . ~og 
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such that for all non-trivial zeros ~ = aQ + ite of all L(s, z)-functions belonging to 
mod 8 we have 

~ 
e~te yl c 7 

(5.2) arc _-> 
e to 6 log 3 (2 + [te[)" 

As to Lemma II let be 

(5.3) [ 1 l I > >J I 1 = Zl =---zz = . . . =  z .  

n 
and wi tha  0 <  < - -  

~ = 2  

(5.4) ~<= larc zj[<_-z ( j = l ,  2 . . . . .  n). 

Let us be given a positive integer m and the index h so that 

( 5 . 5 )  lzh] > 
4n 

m + n ( 3 + ~ )  

and fixed. Further we define B and the index hi by 

(5.6) B =  min Re ~ b j  
h~=~<hl j = l  

if there is an index h 1 with 
2n 

( 5 . 7 )  lzhll < [zhl-  

and 

(5. 8) B =  min Re ~ bj 
h<=~n j = l  

otherwise. 9 Then we have the 

LEMMA II. I f  B>O then there are integers v 1 and v2 with 

(5.9, m+l<-vl ,  v2<=mq-n(3+~) 

such that 

(5. 10) n ~ . + . ( 3 + ~ )  
R e ~ b j z } ' > -  B j = I  - 2 n + l  2 4 ( m +  3 + ~ ) )  " 

9 Of  course we can choose (5. 8) as the definition of  h l always, but  in s o m e  cases; like in paper  
[3], it was more  advantageous to choose h l <: n. 

3* 
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and 

n B 
(5.11) Re ~7 b j z j  < 

*2 2 

J=! 2 n +  1 
n I 

2 4 ( m + n ( 3 + ~ ) )  (~-~) " " 

Finally we shall need again the Lemma III. 

LEMMA III. There is a connected path V in the vertical strip ~<-tr<= 2 -~ , sym- 
metrical to the real axis, consisting alternately o f  horizontal and vertical segments 
and increasing from -co  to + oo monotonically, such that for all L-functions mod 8 
the inequality 

~ -  (s, Z) < c8 log 3 (2 + It[) 

holds. 

Since the proof  is mutatis mutandis the same as in the book of  one of us (see 
TURAN [1], Appendix III), we shall omit it. 

6. Next we turn to the proof  of  Theorem 2. 1. We start with the notation 
(4. 2)--(4. 4) from the integral 

(6.1, J ( T ) =  1 ~(er---s~ .2 1 ~L" L" } 
4rci s ~ T [ ~ -  (S, Z1)  - -  L -  ( s ,  Z2)  d s ,  

(2) 

where Yl is defined by Lemma I the integer v is restricted at present only by the 
requirement 

(6.2) l o g T _  logO. 9 T<__ v <_- log T 
Yl Yl 

and the (numerical constant) integer ~_-> 1 will be chosen appropriately only later 
(in dependence only upon the constants el and e2 in (4. 6) resp. (4. 8)). Performing 
the integration in (6. 1) we get 

e*2yl eVyl 
lo~.2 +" - -  lo~.2 + ~ - -  

n n 
(6.3) J ( T ) =  ,~,v,,~ A(n) (l~-~a)! ,,~=eVYl'~ A(n) (v+a) !  - 

n_=Smod8 n_=3mod8 

.2+~r e~Y~ log ~ 

= f (v+c0! 
1 

eVyl 

a {I-t(x, 8, 5 ) - n ( x ,  8, 3)} = f {1-I(x, 8, 3 ) - n ( x ,  8, 5/}. 
1. 

log .2+~ ~-- 
�9 log x ~ ] dx. 
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Writing the integral as 
,0 .,,`'.,) 

(6.4) f + f ~ef j" + j", 

the second factor in the integral in (6. 3) is of constant sign in each of our intervals. 
Hence if c4 is sufficiently large, we have 

Vyl ) / 
~ ( ~ )  { log" +'~ e~Y~ 

(6. 5) IJ ' l<er '  ogx (v+~)! dx< 
1 

ylerl ( T)  "< (v+~)! (vYl)`'+~<el 21 logTlog3 
log 2 T 

using (5. 1) and (6. 2). Further from (6. 2) 

J " ~  max {1-I(x, 8, 5)--FI(x, 8, 3)}- { ) el(vyx) logv + a eVYa 

f - X 
- l o g x  (v+ ~)! d x =  

[ vYl 
e,k ~ +-~gVi-) 

(v+c0(v+c0 ! \ v Y l v + ~ + l ]  ' 
hence 

(6. 6) 

- max {n(x ,  8, 5) -1- I (x ,  8, 3)} 
x ~ T  

n ax{ (x85) 

and analogously 

(6. 7) mi,~ {n(x, 8, 5 ) - n ( x ,  8, 3)}<_-{~+~){~+~)~ ~ { T u  " 

.{j(T)+el(21 log Tlog3 T)}  
log z T 

Replacing II by ~k the necessary (slight) change is the same as at the end of 10 in 
paper [2] and can be omitted. 

7. Using Lemma III Cauchy's integral-theorem gives at once 

(7. 1 ) J (T) -- ZQ(z~) 0~ +l \ 0 ] + 2- 2'~(z~) ~ q -  = 

=-~ s-U4 T (s, z1)--T(s, z2) ds <c9(5e ) ,  
V 
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where the dash indicates that the summation is to be performed only upon zeros 
lying fight to V. Owing to (6. 2) this is for sufficiently large c4 

(7. 2) "<Cl0 T0'45. 

Since further as well-known the number of non-trivial zeros of L(s, Z) with 

r _<- t e < r + l  
is 

the contribution of the O's with 

< cl 1 log (2 + lr]), 

1 

IIm 01 >log l~ T 

to the sum (7. 1) is owing to (5. 1) absolutely 

( e ~ ,  / v 
< C 1 2  - -  ~ r  

log T6 T/  

Collecting this, (7. 1) and (7. 2) and (6. 6) we got 

(7.3) max{II(x '8 '5)-II(x '8 '3)} > (v+~)(v+cO' ( " 2 vy l(v + o 0 )v+~+l. 

{ [er'~ /er~e'V } 

[ t o [ ~ log 1~6 T t tel <= log ~ T 

If again Oo = flo + i7o is that zero of L(s, X1) L(s, Z2) in 

1 => ~-, [tl <= log i~ T 

for which 1 7 is maximal, (7.3) gives at once 

_ . 

x<-r 2 vy 1 (v + ~) 

f(ea~ 3" Q-~-l(er~r -a'------~) 1Oo]) v -  

Itel~ log lo T 

- -  " ( ~  [ e0 [  - - C 1 3  z 0 ' 4 s  

[ t o [ <-- logl o T 

and taking in account that L(s, Z~)L(s, Z2) is real on the real axis and also the 
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symmetry  of  V, we obtain also the inequality 

(7 .4)  max{II(x ,  8 , 5 ) - I I ( x ,  8,3)} > (v+ct)(v+~)! ( - v + ~ + l  )~+~+1 
x~_r 2 vy 1 (v + ~) 

Itel ~_ log ~- T 

- - R e  ~ e ( z ~ ) O - ~ - ' ( e r ~ ( ;  -a~ 1)~) } " - -  t~o -- el3 T~ �9 

[tel-< log)O T 

Analogous upper bound  can be given 1~ for  

(7. 5) rain {H(x,  8, 5) - I I (x ,  8, 3)} 
x<=T 

with a changed sign o f  inequality on the right. 

8. N o w  we shall determine v beyond (6. 2) by using appropriately Lemma 
II. The  z j -numbers  will be again o f  course the numbers  

eyt(e_ #o ) "~ 
- -  l e o l ,  

the definition o f  Qo gives 
max Izi[ = 1 

J 

immediately.  As bj 's  the (+__ Q- ' - 1  )-numbers will serve this time, with proper  signs; let 

(8 .1)  m = F  l ~  ] L ; i  log ~ T . 

1 

As to x of  Lemma II we have owing to (5 .2)  and [te[ ~ l o g i ~  for sufficiently large 
Ca again 

(8.2) 

fur ther  for  n the upper  bound  

2 

x = log -~- T, 

1 

(8 .3)  log 1~ T-(log2 T) 3. 

However  in the choice o f  the indices h and h i we have now a situation, different 
f rom that  in paper  [3]. We choose now simply 

(8 .4)  hi = n  

Z ~ L"  1o Sofar e. g. the case (2, 3)5 runs quite parallel, only in (6. 1) the factor ~- (s, Z1) -- ~- (s, Zz) 

i [L" ~ L" ) 
has to be replaced by ~- [•  (s; Z ) -- ~- (s, ~ )  , z*(n) = 1, i, -- i, -- 1 rood 5. 
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and if 0' is defined in (4. 7), let h be such that 

erl<e ' -  #0) eyl'~- #0) 
(8.5) 0" 10ol d~ 0--; t0ol d~fzh-1- 

Then we have from (4. 6), (4. 7) and (8.2) for sufficiently large c4 

(8.6) Izhl > e l  - _~log 20 T > _ _ 4  , .  4n 

i.e. (5. 5) is by this choice satisfied. Hence Lemma II is applicable; the resulting 
v~ and v2 satisfy the restriction (6. 2) owing to (8. 1) and the inequality 

n 3+~-  < - ~ l o g  ~ 

follows quite roughly (see (8.3) and (8.2)). Before applying it, we have to orientate 
about B in (5. 8); this will be done by the proper choice of the integer ~ in (6. 1) 
and by use of the configurational inequality (4. 8). 

We distinguish two cases. 

Case L ~1 0" is a zero of L(s, Z2) (and hence not of L(s, ~(~)). Since Z2 is real, we 
have without loss of  generality 

(8.7) 0 < arc 0"_<- arc tg 2 ~  ( <  2 ) .  

Evidently each of our remaining _~ b j-sums contains the terms 
j = l  

- (0,)~+ 1 + (~)~+~ - 10,1~§ ~ cos ( (c~+l )a rce '+~) .  

(8.7) gives at once that for an infinity of integer e's 

(8.9) I(e+ 1 ) a r c 0 ' + n l  <---- 7~]. mod ( -  ~, 

For these e's we have certainly 

B-->2 2 [0'1 - ' -1  -~_~o 101 - ' -1 ,  

where the last sum contains owing to (4. 8) all zeros of L(s, Z1) L(s, Z2) with 

IQI => IQ'I+~2; 

hence we can find a sufficiently large ~ from those satisfying (8.9) so that 

(8.10) B >  le'l -~-I 

~1 Which is actually owing to (4. 2) and (4. 4) impossible but, as told, we want to use only 
the configurational assertion (4. 7)--(4. 8). 
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Case IL Q" is a zero of  L(s, ZI) (and not  of  L(s, X2)). The only change in this 
ease is that  instead of  (8.8)  we have 

1 1 2 
(0,)~+1 q (~)~+1 - [0,1~+1 c o s ( ( ~ + l ) a r c ~ ' )  

and hence instead of  (8.9)  the first requirement for  �9 is 

](~ + 1) arc 0'l <-- ~- mod  ( -  n, n]. 

Hence (8. I0) can be attained in all cases; 12 we fix a that way. Hence the appli- 
cation of  Lemma II gives an integer v~ so that  

[to] ~_ l o g ~  T 

_~_lfer~'o-ao) ) ~ }  > (eP0y~y' c14 

[tO[ <--_ log l~ T 

f 
2n(  1 m + n ( 3 + ~ )  logT 

/'/ �9 eyl-(~- - fl~ ~ = ~ C14 12Q' 1 Yl , 

24 m+n 3 +  1ool) 

2 4 ( m T n ( 3 + - ~ - ) )  e~{(2(mq-n(3+~))} 'k~QO~ ] " 

Taking in account  (6. 2), (8.3)  and (8.1) and flo <-- 1 this is for sufficiently large c~, 

> c l ' I /T-e l  ( - 20 l~ '20'' " log21~ 

and analogously 

Re  ~(z~)  Q-~-x tool - ~Ool J 2 
]to] <---- log ~ T 

-- ' ~ [0ol < -  e~sgT" el 20 log { 2 0 ' l - - -  

[tel~log~O T 

log T ) 
log 2 T " 

J2 In the case (2, 3)5 the role of the ,,dominating part" ~ ((~')-~ -1 -F (~)-__=- 1) will be played 
owing to the appearence of complex characters by • ~'1 -~-l- 
sin((a+l) arc~'!2) but the reasoning runs quite parallel. 

13Since 10o1>1 and m §  3 +  - -v~<n 3 +  . 
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Hence choosing c4 sufficiently large this and (7. 4) give 

(8.9) max {H(x, 8, 5 ) -  H(x,  8, 3)} > 
x ~ T  

Vl + ( v i+c~+ 1 y,+~,+l --  (__ l o g T  "~ 
> 2 ~(I'I+CZ)! ~,,l'lfll(Vl+~5// ClsJ/T" el C161~2T- J" 

Since from (6.2) for sufficiently large c4 

v x + e . . . (  v l + e + '  ~ v'+'+l ( l ~ 1 7 6  
(v 1+o0! \ v l y l ( v l  + ~ ) /  > e 1 - 2 1  log2 T 

(8.9) give 
( l ~ 1 7 6  

max {H(x, 8, 5 ) - H ( x ,  8, 3)} > 1/T -. el - 2 2  
x~T log2 T 

and analogously 

min {H (x, 8, 5) - H (x, 8, 3)} < -  g T- el - 22 log 2 T " 
x<=T 

From these Theorem 2. 1 follows at once. 

MATHEMATICAL INSTITUTE 
OF THE UNIVERSITY ADAM MICZKIEWICZ~ 

POZNAN 

MATHEMATICAL INSTITUTE~ 
EOTVOS LORAND UNIVERSITY, 
BUDAPEST 

(Received 5 December 196/) 

References 

~;. KNAPOWSKI and P. TUR/~N [1], Comparative prime-number theory. I, Acta Math. Acad. SoL 
Hung., 13 (1962), pp. 299--314. 
[2], Comparative prime-number theory. It, ibid, pp. 315--342. 
[3], Comparative prime-number theory. III, ibid, pp. 343--364. 

P. TURAN [1], Eine neue Methode in der Analysis und deren Anwendungen (Akad. Kiad6, 1953). 
A rewritten new English edition will appear in the Interscience Tracts series. 


