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1. Now we turn, as told in I, to a detailed exposition of the comparison of  
the progressions 

(1.1) n - l m o d k ,  n - l m o d / c  
l ~  1 modk .  

We shall keep the (usual) notations laid down in I; we denote by ct,  c2 . . . .  positive 
explicitely calculable numerical constants. As to the results we formulate them as  
theorems when they mean a progress in one of the problems raised in I no matter 
how easily it follows from another theorem of this paper; in particular having proved 
a theorem under HASELGROW'S condition ~ we shall formulate it as a separate theo- 
rem for the k's for which this assumption is verified, i. e. for 

(1.2) k = 3 ,  4, 5, 6, 7, 8, 9, 10, 11, 12, 19,24. 

We begin with the 

and 

TrmOREM 1. 1. For the k's in (1.2) we have for T> cl the inequalities 

log Tloga T )  
max (@(x, k, 1)-~b(x,  k, l)) >~/Tel --41- log, T 

T~x~T 

min {~(x,k, 1)-r  - l / T  el ( -41 l~176 T) 
T�89 r log2 T " 

By this theorem is problem 24 of  paper I for the k's in (1.2) essentially solved 
in the case ll = 1 at least. Since as Siegel proved (see SIEGEL [1]) for all L(s, Z) functions 
belonging to primitive characters mod k have at least one zero Q* = Q* (Z) in the domain 

1 c 2 
(1.3) a ~ ,  I t l~=log3(k+e3(1)) '  (s=a+it).  

Theorem 1.1 follows at once from the 

We remind the reader that  HASELGROVE'S assumption for a k means that  there is an 
1 _ ~ A ( k ) > 0  such that  no L(s,Z) belonging to mod k vanishes for 0 - ~ a < l ,  Itl~A(k). Further  
e~(x)----e ~, ev(x)~e~-l(e~(x)), loglx----logx, logvx----log~-~ (logx). 
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THEOREM 1. 2. I f  for the k's in (1, 2) and a 6o=flo+i7o with 

1 
(1.4) flo--~ ~ ,  ~o > 0 

6o is a zero of an L(s, Z*) belonging to mod k with •*(l)# 1 and 

T >  max (c3, e2(lO[ 6o])), 
then the inequalities 

max {~(x,k, 1 ) -~(x ,k , l ) }>TPoe l ( -41  l~176 
Tl3~x~ T log 2 T 

and 

hold. 

and 

log Tlog 3 T~ 
1rain {0(x, k, 1)-~k(x, k, l )}< -TPoe 1 - 4 1  - - i o g 2 T  / 

T3 ~ x ~ T  

2. Parallel we state the 

THEOREM 2. 1. For the k's in O. 2) we have for T> c4 the inequalities 

max {H(x,k, 1 ) -H(x ,k , l ) }>~Te~ ( - 4 1  l~176 T) 
1 log 2 T 

T 3 ~ x ~ T  

log Tlog 3 T)  
m i n  {Fl(x,k, 1)-rl(x,k,l)}<-l/Yel - 4 1  l o g ~ T  " 

1 
T 3 ~ x ~ T  

By this theorem is Problem 44 of paper I for the k's in (1.2) essentially solved 
in the case ll = 1 at least. Owing to (1.3) Theorem 2. 1 follows at once from the 

THEOREM 2. 2. If for the k's in (1.2) and a qo=flo+iTo with 

1 
flo -> 2 '  70>0 

Qo is a zero of an L(s, Z*) belonging to mod k with z*(l) # 1 and 

T > m a x  (cs, e2(10[qo[)) 
then the inequalities 

max {H(x, k, l ) - I I ( x ,  k, l)} > TPoel ( -41 l ~ 1 7 6  
• log 2 T 

T 3 ~ x ~ T  

and 

hold. 

log Tlog3 T)  
min {H(x,k, 1 ) - I I ( x , k , l ) } <  -Tgoe~ -41 

log2T 
T~i ~ x~_T 
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(3.2) 

and 

(3.3) 

further 

(3.4) 

and 

(3, 5) 

3. In turn theorems (1.2) and (2. 2) follow at once from 

THEOREM 3. 1. 1f for a modulus k Haselgrove's condition holds and for a Qo with 
(1.4) holds, then for 

( ( ' ) )  (3.1) T > m a x  c6, e2(10100]), e2(k), e2 

the inequalities 

r~Nx~ T log 2 T 

log Tioga T)  
lmin {4;(x,k, 1 ) - ~ ( x , k , l ) } < - T P o e z - 4 1  ] ~ 2 T  ' 

T~x~T 

log Tlog3 T.) 
max {1-I(x,k, 1) - I I (x , k , l ) }>Taoe l  - 4 1  log2T 

T~x~T 

min {H(x,k, 1 ) - I I (x ,  k, l)}< -- T'oel ( -  41 l o g T l o g a T )  
T�89 log 2 T 

hold. 
Since the proofs of (3.2)--(3.3) resp. of (3.4)--(3.5) run parallel and the last 

one is a bit more difficult, it will be enough to prove (3.4)--(3.5). 

4. Before turning to the announcement of essentially different further results, 
we shall formulate three simple consequences of Theorem 3.1. First of all taking 
as Q0 the zero in (1.3) we get as a mere corollary the 

TREOREM 4. 1. In the interval 

0 < x < m a x ( c T ,  e2(k), e2(A~k)3) ) 
the functions 

~,(x, k, 1 ) -  ~,(x, k, 1) 
H(x, k, 1) -H(x ,  k, l) 

change certainly their sign, if  for k the Haselgrove-condition holds. 

Here 

(4. 1) c7 = max (c6, e2(10(1 + c2))) 

can be taken. This theorem constitutes first step towards the solution of the Problems 
45 and 25 of the paper I and is probably very far from the best-possible. We 
conjecture that the ,,best" interval in Theorem 4. 1 is 
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(4. 2) O<x<el(csk) 
with a suitable Cs. 

A further  consequence we can draw f rom Theorem 3. I refers to the functions ~ 
Uk(T, I, l), Vk(T, 1,/),  resp. This is the 

TI-n~om~ 4, 2. I f  for a k Haselgrove's condition holds (i: e. for the k's in (1 .2 )  
unconditionally) and ~ 

T>exp c~(el (k) + el (~(k)-~)): (4. 3) 

then the inequalities 

and 

1 
Uk(T, 1, l) > 8 log 3 lOg2 T 

1 
Vk(T, 1, I) ~ log2 T 

8 log 3 
hold. 

In contrary  to the previous theorems these lower bounds are probably very 
rough. Still they are as far  as we know the first quantitative results in this direction 
which are at least for  the k's in (1 .2)  uncondit ional  and thus they mean the first 
essential steps towards the solution o f  the Problems 26 and 46 o f  the paper  I. 

In order  to deduce Theorem 4. 2 f rom Theorem 3. 1 we take as Qo a zero f rom 
(I. 3) and putt ing 
(4. 4) c 9 -----max (c~, e2(10(1 + e2))) 

Theorem 3.1 is applicable to each interval  
! 
3 

z ~ x ~ ' c  
whenever 

"r > m a x ( c 9 ,  e2(k ), e2 (A--~k)3)) 

i .e .  a f o r t i o r i  when 

(4. 5, z expc9~el(k,+el~A--~) } 

Hence each of  the intervals 

[ 3 : J  �9  rsj So , 

contains at  least one sign-change of  ~b(x, k, 1 ) -  ~(x,  k, l). But then if  the integer/~ 
is determined by 

0 .  6) < r <  

2 We remind the reader that UI,(T, I , / )  resp. Vk(T, 1, l) denote the number of sign-changes 
of ~v(x, k, 1) -- ~v(x, k, l) resp. l/(x, k, 1) -- I-l(x, k, 1) in the interval 0 < x _<-- T. 

a For c9 see (4.4). 
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we have 

(4. 7) Uk(T, 1, l) >----I.t, Vk(T, l, l) >=It. 

Since from e9-~ 1, (4. 3) and (4. 5) we have 

log T >  (log Zo) 2 
i.e. from (4. 6) 

32/~+2 > l ogT  

1 
2# _~/t + 1 > 4 log 3 l~ T 

which together with (4. 7) proves Theorem 4. 2 (if Theorem 3.1 is proved). 
An obvious consequence of Theorem 3.1 is the following 

TrmOREM 4. 3. Let L(s, X*) an arbitrary L-function mod k and (supposing 1Tasel- 
grove's condition for k) 

1 
T>max(c6,e2(k), e2 ( A - - ~ ) ) .  

I f  l is such that Z*(1) # 1, then L(s, Z) does not vanish in the domain 

log a T 
a - - ~ 4 1 ~  

1 
max log {r k, 1 ) - r  k, l)} 

log T T~x~T 

] t l<= l  log2 T -  1. 

5. Turning to 7r(X, k, 1) -7r(x, k, l) the matter becomes still more difficult. We- 
assert the 

THEOREM 5. 1. I f  k is one of the moduli (1.2) then ]br T>clo the inequalities 

(5. 1) max n(x, k, 1)-re(x,  k, 1)> 1 log5 T 

el(log~3-L6T)~_x~_T ( |/x ~ 100 
\ l og  x /  

and 

(5.2) min n(x, k, 1)-Tr(x; k, l ) <  _ 1 logs T 
100 

hold. 

This theorem holds without any conjectures and by it Problem 3 of paper I; 
for the k's in (1.2) in the case 11 = 1 is essentially solved. This will follow at once: 
from 
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THEOREM 5. 2. If  Haselgrove's condition holds for a k and 

~(5.3) T> max(es(c, lk), ez(A~k)3 ) ) 

then the inequalities (5. 1) and (5.2) hold. 
Again we formulate two simple consequences of Theorem 5.2. As a mere corol- 

l a ry  of it we have the 

THEOREM 5. 3. If  Haselgrove's condition holds for a k then the interval 

.(5.4) l<=x<-max(es(cllk), e2 (A~k)3) )  

contains at least one sign-change of x(x, k, 1 ) -  x(x, k, l). 
This theorem constitutes the first step towards the solution of Problem 5 in 

paper  I. Most probably the interval (5.4) is much too large. An upper bound better 
t ha n  (5.4) we shall see in paper III. 

A further consequence we could draw from Theorem 5. 2 refers to the function 4 
Wk(T, 1, l). But the lower bound obtained that way would be very low; in paper III 
we shall return to the subject and obtain a much better lower bound. 

Again this is - -  at least for the k's in (1.2) the first step without conjuctures 
af ter  Littlewood towards the solution of Problem 6 in paper I. 

As we shall see in the course of the proof  of Theorem 5.2 an analogous theorem 
holds for ~,(x, k, l) resp. H(x, k, l) instead of  re(x, k, l). However we shall not formu- 
late the corresponding theorems explicitely. 

As to the race-problem of SHANKS- P~NYI we state the following theorem 
(which is for the k's in (1.2) unconditional). 

THEOREM 5.4. If  Haselgrove's condition is fulfilled for a k and for T the restric- 
tion (5.3) holds then the inequalities 

l ogx  {n 1 } 1 
max 1/~ (x, k, 1) - - - -  Z 1  7z(x, k, I) > log s T 

- -  ~ ( k ) -  1 (l,k)=~ 100 
el(lOg~30 T ) ~ _ x ~  T l ~ 1 

,and 
min l~ {n(x,k, 1) 1 Z t  rc(x,k,l)} < -  1 logsT  

- -  l /x  ~ (k) - 1 (t, k )  = 1 I00 
el(log~30 T)~_x~_ T 1r 1 

hold: 

4 We remind the reader that Wk (T, 1, l) denotes the number of sign-changes of ~z(x, k, 1) -- 
--~(x, k, l) in the interval O<x~T. 

5 Or in equivalent formulation, under the restriction (5.3) the inequalities 
1 ) >  1 1  log x =(x, k, 1)--TE=(x)I  ~ og, 7" 

max Vx 
el(log~3OT)~_x~_ T 

and 

~hold. 

mm lOgl/.xX I z~(x, k, 1 ) -  l~(x)~9(k) ] < -- 2001 logs T 
el(log]3 o T)~_ x<= T 
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This theorem again is near to the best-possible. Since its proof  needs only 
slight changes Compared to that of Theorem 5.2 a sketch will be sufficient. Popularly 
expressed this means that in the race of the quantities g(x, k, l) (k fixed) with (k, l) = 1 
the runner l --1 is certainly not permanently, from a certain place on, on the last 
place. 

As to a comparison of the above-mentioned theorems with results attainable 
by older methods we refer to the introductory paper I. 

6. Now we turn to the proof of Theorem 3.1 and to that of ( 3 . 4 ) - ( 3 . 5 ) ,  
resp. The proof  will be based on the following theorem (see TURIN [l]) which we 
formulate as 

LEMMA I. Let  n ~-- N and with a 0 < ~ ~- - -  
2 

(6. 1) Izll-> Iz2l ~ ' . .  ~ lz ,  I 

(6.2) ~ <= ]arc zjl <-- r~ 

and the b f n u m b e r s  are restricted by 

(6.3) B ~f min Re (b~ + . . .  + b,) > 0. 
/1 

Then to each non-negative m there are integers vl and v2 with 

(6.4) m~=vl,  v 2 ~ = m + N  3 + ~  

such that the inequalities 

(6.5) Re ~ bjz'j I >=B 
j = l  

IzllVl I N }2N 

2 N + l  1 2 4 e ( r n + N ( 3 + ~ ) ) t  

(j  =1,  2 . . . .  , n) 

and 

(6. 6) Re ~ bjz~2~= - B  
Izll vl 

j=l 2 N +  1 24e(m N jzN 

hold. 

For the proof  of  this lemma we refer to the original paper. However a modi- 
fied form of it will be used in paper III of this series, whose proof follows quite 
closely that of Lemma I and there we shall sketch the proof indicating the (slight) 
changes. 

7. We shall further need a lemma, which is adopted for our present purposes 
from a paper of one of us (see KNAPOWSKI [1]). Let 

(7. 1) T>max(c12  , e2 (k), e2(A--~k)a)) 

and Q--aQ + it o should run over all non-trivial zeros of all L(s, x)-functions belong- 
ing to mod k. Then we assert the 
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(7. 3) 

and 

LEMMA II. Under Haselgrove's condition for the T's in (7. 1) there is a Yl with 

(7.2) log2 TNYl ~= ~ log2 T 

and that for all ~'s the inequalities 

e%rl[ A(k) a 
7z _-> a r c  e ~ c12 k(1 + It0[) 6 log 3 k(2 + Itel ) 

arc 1. 
(7. 4) • --> 0 --~ c~z k(1 + Itol )' ,og 3 k(2 + Ital ) 
hold. 

Actually we shall use in paper II only (7. 3); (7. 4) will be used only in later 
papers of this series. We shall give here the full proof in order to avoid repetitions 
(as we shall see, however, the proof  of (7. 3) alone, would amount to the same). 

Q ,  
8. Let us call the Q's and ~ s together as 2's (which are not necessarily diffe- 

rent) and put  

(8. 1) 
Let for a fixed 2 and e > 0 

(8.2) 

with the property 

2 = a~ + it a . 

E(e, 2) denote the x-set in 

I~r[~--~log2T, ~--~log2T 1 

(8.3) tg(t~x)---t-~ < l + t  2 e  . 

Let us estimate its [E(e, 2)l-measure. We define for our 2 and fixed integer q the 
number xq(2) by 

trc <- taXq(2)< (q + 1)x 

(8. 4) 
tg(t~Xq(2)) = t--L. 

tr~ 

However q is restricted by the requirement xq(2) being in 1; we denote the set o f  
q's by Q and their number by [Q[. Let first be t~>0.  Since from (8. 2) 

tz log2 T < t~xq(2) <_- tx log2 T 
20 = 10 ' 

we have roughly 

tz log2 T 
(8. 5) 1 0 1 < 2 +  20 <(1  + t~) log 2 Z. 
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where E~(~, 2) is defined by 

(8.7) 

Hence 

Denoting by Eq(e, 2) with a fixed q the subset of  E(e, 2) with 

(8.6) qTr <= t~x < (q + 1)rr 

we have in Ea(e, 2) owing to (8.3) 

Itg (tzx) - tg (t~xq(2)] < 1 + t] 

and thus 
Eq(e, 2)cEq(e, 2) 

e I 
Ix-x~(2) l  <_- ] + t l  " t~- 

qz~ t~x <(q + 1)zr. 

IE(e, 2)1 = 1 U gq(e, 2)1 ~ [ U E~(e, 2)[ <~ (1 + ltx[) log2 Z (1 + ti)Itz[ 
q~Q q~Q 

~using (8.5) and the same holds obviously for t~<0. Hence for the measure IH[ of 
the subset H of I, for which 

(8.8) tg ( t ~ x ) -  t~ > e 
a~ 1 + t 2 

holds for all of our 2% we obtain the lower bound 

e l + [ t a l l o g 2 T g l o g z T ( l _ e ~  l+lt~l 1 } 
(8, 9) III - zffx 1 + t~ I t ~  Itzl 1 + t~" " 

Writing the last sum in the form 

Z + Z  
I t .q~ 1 I t M > l  

the first sum is, owing to the definition of A(k) and the inequality (Z fixedt) 

(8.10) 

for all real r's at most 

the second 

Hence (8.9) gives 

(8. 11) 

~e(x) 1 <c l3  logk(1 + [rl), 
r~tQ<r~l 

k log k 
c14 A(k) ' 

cask ~ l o g k ( l + r )  
r = t  r 2  <c16kl~ 

,.,>1og2 {1 klogk  
c17  A- 6-1. 
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Thus choosing 

(8.12) 

we g e t  

1 A(k) 
40e17 k l o g k  

IHI > 1 log z T > 0  

i .e.  there exists an Yl in I such that  

(8.13) tg(t~y 0 - t ~ z  > 
0" 4 

for  a// o f  our  2's. 

1 A(k) 1 
40c17 k l o g k  l + t  2 

9. Now we assert that  this y~ has the proper ty  required by the lemma. For  the 
p roo f  we remark first as well-known the inequality 

(9.2) 

Then we have 

C18 
(9.1) 0"4 > log k(1 + it2] ) 

(using also Haselgrove's  condit ion and the functional  equation). We distinguish two 
cases. 

Case a). 2 is such that  (1) 
[cos (t2Ya)[ <- 4(1 + It~l) 4- o 

1 
[sin (t~yl)] > 

and hence f rom this, (9.2)  and (9.1) we get 

(9.3) 
eitxy~ 

I m = ~ - -  = 

0"2 O'2 

2 4 
> '  l + t ~  

Case b).  2 is such that  

0"a sin (tzyO -- t2 cos (tay 0 I 
0 -2 + t ] I > 

c18 1 
4 (1 + t ~ ) l o g k ( 1  +[t~t) " 

(9.4) [cos ( tzy0l  > trz 
4 ( 1 +  t~[) " 

Then we have from this, (8. 13) and (9. 1) 

eU~yl [ tg ( t z y l ) -  t~ 
0"A 

Im T = a2 [cos ( tay0] 0"~ + t~ 

1 A(k)0" z A(k)  ~ - _ _  
160C17 (1 + ]tzl)Sk log k > C19 (1 + [ta )Sk log 3 k(1 -r jtzl) " 
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This and (9.3) gives for all of our 2,s 

ei'*r' I A(k)  
(9.5) Im ~ ,  > e2~ (1 + [ta[)3k log3k(1 + [ta[) 

But then, since roughly 

[ R e ~  = [a~ c~ (t~Yl) + t~ sin (tzY' )] z + t z -- l + ] t ~ l ~ 4 - - t ~  

we get from this and (9. 5) for all of our 2's 

[" d t-y, '~1 
(9.6) tg~arc ~ )  

We now fix arc z with 

If  for a 2 we have 

we have nothing to prove. I f  

then owing to the inequality 

~c21 (l+lt~!)6klog3 k(2+fta]) " 

1 + It~l 
A(k)2 ' 

- n < a r c z < - n .  

7~ ~ e itarl 7~ 
arc T - ~ - ,  

7Z 1 eit'~yt - - >  arc > 0  
4 - T -  

[tg~l<_ __4 I~[ 
7~ 

7~ 

the Lemma II follows from (9.6) at once. 

10. We shall further need the 

LEMMA III. I f  S = a + it, then there is a connected path V in the vertical strip 
1 2 

-~ Na<-_~ say, symmetrical to the real axis, consisting alternately of  horizontal 

and vertical segments and increasing monotonically .from -oo to +oo on which for 
all L(s, Z)-fimctions mod k the inequality 

Z~z(S, Z) < c22k l o g  3 k ( 2  + Itl) 

holds. 

The (simple) proof is rnutatis mutandis the same as that of the Appendix III 
in the book of one of us (see TURAN [3]) and can be omitted. The symmetry was 
not important there. 

11. Now we can turn to the proof of (3.4) - (3.5). Let for a > 1 

L'  A(n) A(n) ( l l .  1) F(s) d~r 1 ~ ( 1 - ~ ( l ) )  ( s , z ) =  ~, Z 
= ~ (k) Z-  n' n=_lmodk n= 1 modk n s 
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Then with Yl of  Lemma II and with an integer v ~ 2, to be determined later, putting 

d e f l  f ( e Y ~ s ) V F ( s ) d s  ' 
(11.2)  J(v) 2hi 3 

(2) 

we  obtain, owing to the well-known integral-formula 

~the formula 

!x 
2~i s--; ds = for 

( 0 < x < l  

J { - -  J ( v ) - ( v  1)' ~ '  A(n)log ~-le~y' Z 
�9 n ~; eVYl n t~ ~ eVyi 

n=-lmodk n = - l m o d k  

,Or introducing 

(11.3) A(n) A(n) ~fg(x,k, l) 
log n ~ log n n ~ X  n ~ x  

n~lmodk n-= l m o d k  

eVyl) A(n) log ~- 1 ~_~.j 

we  get 

(11.4)  

The function 

J ( v )  = - -  

evYl 

1 f e TM log x.log T M  I _ ~  dxg(x ' k, l) = 
(v-- l ) !  X 

1 

evYl 

( v l l ) l f g ( x , k , l ' { l o g x ' l o g ~ ' X ? } ' d x .  
1 

log x-log ~- 1 e~Y~ 
X 

increases for 1 <=x<=e yl and decreases for x>=e yl and hence from (11.4) 

(11 .5 )  j ( v )  - 

eYl 

1 l) {log x.log ~'- 1 e~Y~]' 
( v -  1)' f g(x, k, �9 ~ - f  dx+ 

1 

eVYi 

f f e~yl)" 
( v .  l)! 

e y 1 
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For the (trivial) upper estimation of I Jl(v)l we have from (7.2) 
eYl 

f ( o  evYl) '1 1 1 gx. log ~-1 dx = Jl(v)[ <-_ max_ g(x, k, 1)1 " (v -  1)-------~ x-- 
x~--logl0 T t 

eYl 

f (  e~Yl) ' 1 log x-log ~- 1 -x- dx = = max_ l g ( x , k , l ) l ~  
x--~log |~ T 1 

1 
- (v-1) !Yl( (v- -1)Yl)~- i  max, Ig(x, k, l)[. 

x~_loglOT 

Since trivially 

max Ig(x,k, ll< ~ '  l < l o g T  
1 p ~  m 

x_~loglO T l 
pm ~_ Io~- 10 T 

we get from (7.2) 

Yl ((v - 1)yl) v-1 
(11.6) [J1 (v)l <-- (v -- 1)! log T. 

As to J2(v) we have 

Yd ((v -- 1)yx) ~-' 
J2(v) <- max g(x, k, l) 

(v --1)! ~ _ ~  
and hence 

(11.7) max g(x, k, l) > 
x~eVYl  

:and analogously 

(v 1)! J ( v ) - l o g T  
yl((v-- 1)yI) ~-t 

(11.8) m i n g ( x , k , l ) <  ( v - l ) !  x~_~ yt((v - 1)yl)V_ 1 J(v)+logT. 

We now restrict v by 

(11.9)  l~176 9 T-~ v<_ - l ~  T 
Yr Yl 

If we want to prove (3.2)--(3.3) instead of (3.4)--(3.5), we have in (11.4) 
( ? ) '  ( e v r l \ "  

log~- 1 instead of log x log v- 1 ~-;-) i .e .  the term corresponding to Jl(v) 

does not appear at all. 

12. Using Lemma 1II we obtain that on V the inequality 

(12. 1) IF(s)[ -< c22k log 3 (2 + ltl) 

7 Acta Mathematica X I I I [ 3 - 4  
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holds. Cauchy's integral-theorem gives at once 

S ( v ) - - ~  ~z (1-Z(I)) z "  = 
(12.2) 

'lfie,, V = ~ - s )  F(s)ds <c2sklog3k(5eg'X) ~, 
(V)  

where the dash means that the summation is extended at fixed Z only to those 0 = 0(Z) 
zeros of L(s, Z) which are right to V. Owing to (11.9) and (7. 2) we get from (12. 2) 

_~_)  2 (40 log T ~  
(12.3) J ( v ) - l  (k) - log2 T/" 

Further owing to (8. 10) and (11.9) we get for the absolute value of the sum contain- 
ing the zeros with 

1 

Jim 0I =>log i5 T 
the upper bound 

r log 2 kT'T'el og2 , 

and since from (11.9), (7.2) and (3.1) we have 

v log2 T >  ~-l~ T - l o g  ~ T > log  T-- log ~ T 

we get for this sum using (3.1) the upper bound 

c25 log 2 kT.el (log o, 9s T) < e, \ log  2 T J" 

This and (12.3) give owing to (3.1) 

: 
Ito[ ~_log lO T 

We write it in the form (owing to the symmetry of V) 

ea0rl ~ 1 (e(e-a0~r, ~o[)~ < , r ~ - f l o g T l o g 3 T '  
J ( v ) - ( ~ )  - - ~ R e  z~ (1 -~ ( l ) ) -  ~ '  - i el~ ]o--~zT ] "  

1%1 <=log TgT 

Hence (11.7) and (11, 8) give 

(12.4) maxg(x, k, l) > = ( v -  1)! - -  - ~{ePor,~vl 

�9 Re 2 z ( 1 - ~ ( / ) ) 2 '  (e(e-P~176176 T 
Z( / ) r  1 \ / .) 

Itel ~--log~T 
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and analogously 

ming(x , k , l )~  = ( v - - l ) !  .~(efloylx~ v 1 R e . ~ z ( l _ ~ ( 1 ) ) .  
~,<-r Y,((v--1)Ya) ~-1 [ \ [~ol , ]  v(k)  z(O*l 

(12. 5) 
~ '  e(e-a~176 q-T 0'45 + log  T. 

Ite[~--logl0 T 

13. The integer v was restricted so far only by (11.9). In order to prove (3. 5) 
we shall use the inequality (6. 5) in Lemma I. For  this sake we observe first that 
the number of  terms in the inner sum of (12.4) is owing to (8. 10) at most 

1 1 

3cxak 10g(k log 1~ T).log 1~ T 

which in turn is owing to (3.1) 
a 

< c26 log F6 T(log2 T) z < log ~ T defN. (13.1) 

Let further 

(13.2) 
log T 

m - - -  logO, 9 T. 
Yl 

The role of the zj's in Lemma I is played by the numbers 

(13.3) e(e-P~176 
0 

and that of the bj 's by numbers (1 - ~(1)). But  then we have for p = 1, 2 . . . .  

2re 8 
(13.4) Re (b 1 + b2 + ... +bu) _~ 1 - c o s  ~ >~-5 

i. e. (6. 3) is satisfied. Further Lemma II, (3. 1) and (13.3) give that 

e i'"r~ A (k)  3 
(u ->)]arc zj[ = arc - - e  :> c 1 2  k(1 + Itel) 6 log a k(2 + ]tel ) - 

(13.5) ->ca2 A(k)3 
- -  3 1 "::" 

2 k log ~ T.log 3 k(2 + log 1--6 T) 
3 3 

>c27 log - ~  T-(log2 T) -5 > lo g  -~- T d~fx. 
I-" / ",,"-I 

with the choices (13. 1 , - ( 1 3 . 2 , - ( 1 3 . 5 ,  the interval Irn, m + N ( 3 + - ~ ) l  Since 
L \ "~/_.1 

is contained in the interval (11.9), we may choose as v the value v 1 in (6. 5). Fur- 
ther we have owing to (3.1) 

[Yol < f 6  log2 T <  log T 

7* 
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and hence Q =0o occurs among our ~'s; thus 

(13.6) max ~zjl ~ 1. 
J 

Then (6. 5) of Lemma I gives from (12.4) 

max g(x, k, l ) ~  (vl - 1)! i 8 1 
~=~r Y l ( (v l -  1)Ya) ~1-i ~ ' 3  l~176 

(13.7) 
(eP~ y l  (log~ y~~176 TO,45} _log T. 

" \  [--~o],/ \24elog T]  

From (11.9) and (7.2) we have 

(13.8) 

1T. 

(1 ) 
(et~orl) ~J = (eYlVl) #o ~ Taoel ( -Yl  log o, 9 T )  ='~ Taoel -- -i-6 l~176 9 T.log2 T , 

further, using also (3.1), 
~ log T 

(13.9) 10ol "1 <---- og2 T < el 

and finally 
20  l o g T  

(v 1 - 1 ) !  ~ (  10 "~ 
Yl((V~2--i)~) ,-1 \ e  log2 T /  

From this, (13.7), (13.8) and (13.9) gives 

20 log TlogsT ~ 
/ 

201~ Tlog 3 T ] .  
> e l \ - -  1--~g2 " ~ / 

log Tlog 3 T~ 
(13.10) m a x g ( x , k , l ) > = 2 T a o e l - 4 1  1-~2T ]" 

Since for x ~  T 1/3 evidently 
1 

Ig(x, k, 1)1 < T ~ 

holds, (3.4) follows from (13. 10) at once. The proof of (3.5) runs analogously 
only we have to apply (6. 6) to (12. 5). 

14. Next we turn to the proof of Theorem 5.2 in which we also use ideas of 
Littlewood, Ingham and Skewes (see LITTLEWOOD [1], INGHAM [1], SKEWES [1]). We 
shall distinguish two cases (l fixed!). 

Case L There is an L(s, s rood k with x'(l) ~ 1 which has a zero Q" = tr" + it" 
with 

, 1 log s T 1 
(14. 1) a ~ -  +42  ; - - - - T ' A  log 2 It'[<-- 40 log 2 T. 

In this case ( 3 . 4 ) -  (3.5) is clearly applicable i. e. there are rt and zz with 
! 

(14.2) T3~T1, T 2 ~ T  
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so that 

�89 (log Tlog3T) 
(14.3) II(zl, k, 1)-II(zl, k , l )>T  el \  log 2 T 

and the same lower bound for l'I(z2, k, 1 ) -  I-I('c 2 , k, 1). Since evidently for x _~2 

I{n(x, k, 1 ) - n ( x ,  k, 0} - {~(x, k, 1)--~r(x, k, O}l< 2fx, 
choosing clt in (5.3) sufficiently large we have 

(14. 4) n(~l,k, 1)-n(~l ,k, l)>21/Tet  (log Tlog3 T )  
\ log 2 T 

and the same lower bound for n(z2, k, l) - n(z2, k, 1), which settles amply the Theo- 
rem 5.2 for Case I. 

Case II. No L(s, X) mod k with z(l) # 1 vanishes in the domain 

1 logs T 
(14.5) o--~ ~- + 4 2 1 - ~  ~ 

Itl -<- 1 log 2 T. 
~td 

Let 

(14. 6) z def 1 log4 T ( <  log4 T) 
- 20tp(k) log s T, log 6 T 

and with a sufficiently large C2s 

(14. 7) q ~f 1 + [C2s log s T]. 

15. Let Z be an arbitrary character rood k and X the corresponding primitive 
character mod k* with k*lk. Then we have e for x_~2 

(15.1) Itel ~:~-~ log2 T 
X T)) + log x~ <:C2 9 /~__~(log.  2 x+log2  (klog 2 

{ l o g 2  / - 9 
where 

10 for X = Xo 
E~ = elsewhere, 

0 = 0(X) runs over the non-trivial zeros of L(s, X) (identical with those of L(s, g*)) and 

L" Vo(X*) + do(X,) + . . . .  (l 5.2) ~ -  (s, X*) - s 

6 See PRACnAR [1], pp. 228--229. 
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We have Vo(Z*)=O or 1 and since 7 

do(Z,) + • 1 tol<-lO <c3~176 

taking in account also the functional-equation and (14. 5) we get 

(15. 3) [do(Z*)[ <c31 log k. 
Since further we have s 

~ '  A (n) z (n) ~ '  A (n) Z* (n) < c32 log k log x, 
n ~ x  n ~ x  

we get for all characters mod k 
I X 0 

X A(n)x(n)-Eox + X y < 
n~_x [to[ ~ = A  log2 T 

x ~ T))}. < ca3 {logklogX+lo-og2 T(lOg x+ log  2 (klog 2 

Dividing by 1/x and replacing x by e r (i. e. r_->log 2) and putting 
Y 

(15.4) g(r) de=fe-~{ ~ A(n) -  X A(n)} 
n ~ e  r n<=e r 

n=- 1 m o d k  n = - l m o d k  

we obtain the inequality 
1 

, g ( r ) + ~  ~z (1 ,~( l ) )  t ~o,x, r e(e--~)r 
[ 0 l ~ = ~ l o g 2  O 

(15.5) 
r 

{ _ r  e2 )} 
< ca4 re 2 log k -~ log2 T (r2 + l~ (k log 2 T) . 

Since owing to the functional-equation and (14. 5) we have 

II cp(k) ~ ( 1 - ~ ( 1 ) )  z~o <cas l~  
I t e [ ~ l  

(15.5) gives 

1 
g(O + ~ - ~  Z (1 - ~ ( 0  < 

1 < [t0 [ _ ~..(~log2 T Q 

r 

{ e~- } 
< c36 log k + ~ (r 2 + log 2 (k log2 T)) . 

7 S ee  PRACHAR l l ] ,  p .  233.  
a See  PRACHAR [1], p .  234 .  
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Making the restriction 

(15.6) 0 < r < l o g  3 T 

this and (5. 3) give 

g(r) 1 (15.7) + ~ ( k )  f (1 - ~(l)) ,~,(x) 
1 < I!o[--~0 log2 T 

16. Next we consider the sum 

(16. 1) Sx(r, T) d e ~ l <  t ~ 0 ~ Z )  T - -  
I el ~log2 

Then we have 

e(-~189 ' 

Q-- r 
e 

(16.2) 

< c 3; log k. 

this is again 

< C39 log k 

and hence from (15. 7) we get 

g(r) + 1 I (16.3) - ~  ~ (l - ~(l)) ~'~2 e"~ 
l<l%l_i~log2T ire <C40 log k" 

With q and z in 14 we restrict a new parameter to by 

~(k) , 
-7--- ZlOg ~ (16.4) . . . .  r q = t o = q  . 

sA,, 
T) -- ~ ~ ae + it e ite = 

1 < It g2 T 1 < Ite[ ~ 0 0  log2 T 

Le (~176  11 1 
-<- Z + Z �9 

Since from (15. 6) and (14. 5) we have (if elx in (5.3) is large enough) 

le(~~ r -- 1 ] < 84 (l~ga2 ~ 2  , 

i .e .  the right-side of (16.2), using also (5.3), 

1 
1 -~C38 Z log2T ]~1 ito[, 

1 < Itot ~ _ 1  
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Defining Go(r) by 

sin z(r--to)2 )2 

(16. 5) G,o(r) = z z(r--co) 

2 

1 
we multiply in (16. 3) by ~ G~(r) and integrate with respect to r between 3co 

5 
and ~-to; the requirement (15.6) is not violated since from (16. 4), (14. 6) and 

(14.7) we have 

~-09 <= -~ q <= 4 ex (log 6 T +  log c2s) . 1  log s Tlog 6 T 

again if clx in (5.3) is sufficiently large. Using also the relation 

,f 
2n~ z. 

we get from (16.3) the inequality 
s 

sin z (r - to) "~ 2 

2 .) dr=l, 
( r  - to )  

2 

(16, 6) 

sum 

(17,1) 

g(r)G~,(r)dr + ~  ~ (l .~(1)) z~ 1 I 

3 1 < Itel~=~log2T 21rite 

S 

"3~ eitprGto(I~) dr l ~ c4o l~ k" 

4 ~ 

17, We complete the inner integrals to jr. For this sake we consider first the 

dcf 1 1 f ~ it z ,  = ~ ( x >  ~ , e ~'o,~(r) dr . 
<l to l  ~T OSd [ 

This is obviously (roughly) 

<ca' ~ ~To <c4210gk 
"L'(D 1 <  ~ 
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and the same holds for the sum 
3 

(17.2) [ ~ l f eu~'G~,(r) 
x < It ol-<-~ 2nit~ 

Let further be 

def 
Z 2 = 

(17.3) 

Then 

dr . 

Z~(x) _ 1 I e"o'Go,(r) dr = 

~ <ttol~.~.~log2 T 2rtitOs.] -s 

ette ~o : i~  r 
- -  e .r 2~tito ~J 

r<_- Itet __ ~-~ log 2 T 

1 1 ~ i'~ 
(17.4) Z2 -<-= -~- n • - -  

~ _ l t e l _ ~ l l o g 2 T  Itol J e ~  . 

Partial integration gives that the last integral is absolutely 

z 6 4  z c43 c44 
[tel T 2(.02 Itel lxo It~l~o 

and hence from (17.4), (8.10), (16. 4) and (14. 6) 

(17.5) Z 2  < c 4 5  ,~  -~1 < c 4 6 ( l ~  ~ )  
(D I t 0 [ ~  t 2 f.O ~k T "]- < C 4 7  

(since from (5.3) we have r_~3) and the same for the sum 
3o~ 

/ i  

(17.6) Z 1 j 
t~ltol~olog2T 27rite_. " 

Taking in account that - -  as well-known - -  

1 e":GoAr) dr - " e' ~ y 
-2~_~ 2~ _. - ~  : d), = 

- e i ' - : '  It ol <= = if 
lt ol->r, 
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we get from (16.6), (17. 1), (17.2), (17. 5) and (17.6) the important inequality 

(17.7) 

5 

~--~ f g ( r ) G ~ ( r ) d r + - -  
3 

( 1 ~(1 /.(/)). <~@~ 1 Itol e '~'~ <c4slogk. 
q)(k) "~ 1 r / ito 

18. Next --  adapting properly the idea of LITTLEWOOD we consider the sum 
rc 

1 ( ~ _ ) e  ''2~ 
(18. l) Z3 ~9(k) ~ (1-- '~( / ) )1  <~lt~IX<) 1--  " it~ 

This is obviously real and hence 

(18.2) Z3 1 2z q)(k) ~ (1-Re~,(l)) Zo,~ 1-  �9 
1 < Itel _~k t o 

--Im~(/) ~ 'e(x)(1- Itol ~ c ~  -- 
t <lto[~_r \ Z ] t o 

1 ~' ( 1 - R e ~ ( l ) ) ~ o ( x  1 -  2r 

~t~ ~ 1 (( cos - -  to 2z 1 
Im ~(/)~Q~,(1 - ~ ) - ~ - -  t<,o-,\ / .o ) + ~ )  ~ I -Rez( / ) ) -  

sin nt~ 
~o<~)(1 _ ~ ) 2z Im Z('),<=to<=,\~~176 c~ ~ ~  

"1< O~'~\ '0 ~-: ~ - 0  - t  = 

2 i sin m~ 
_ ~o(k) y I(I-Re~:(/))I~'<,~U~ 1 -  to 

nt e] 
COS - -  

Im~(/) Z (1 t(,~ 2z (aerZ~_Z,  , 
- -  ~ - 3 

l < t o ~ \  / 0 
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where 

(18.3) 2 x Z(/))l~ff<t~(<--z~(1-~) Z ~  - -  ~ (1  - Re ~0(k) 

sin nt~ 
2z 

t o 

(18.4) Z'~ -- 
(  )cos 

2 ~Imz(/)~,.o.~x~ 1 2z 
q)(k) z 1 <~<=~ t~ 

As to the last sum we remark that the contribution of the real characters is obviously 
0; we are going to investigate the contribution U(Z) of a single complex X taking in 
account that for the N(y, ;0-number of 0(X)'s with 

the formula 
0 < a < l ,  O<te<--y, y > l  

(18.5) y , k*y 
N(y, Z) - ~ Jog 2nee < c49 log ky 

holds (k* at the beginning of 15). We have 

( )cos  i( 
U(Z) o~r ~o~) l -  t-o 1 -  dN(y, X) = 

l<to--~\ Y 
1 

i 

and hence, since k* belonging to ;( and to ~ coincide, and Im ~(1)= - I m  Z(I), we 
have also 

Thus 

(18.6) 

i -•176 k'Y)+ (Im ~(1)).U(z ) +(Im Z(/))U(~) = -- {Im ~(l)(N(y, Z) 2n 2ne] 
1 

+ I m z ( 1 ) ( N ( y ,  ~) ~-log~-xe)~ ~fy 1 - Y )  ~ - I  dy. 

[U(z) Im ~(l) + U(~) Im Z(/)[ < Cso f log ky 
1 

d ! c~ '~-* 1 
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Since 

the last integral is 

\ C O S -  
y ~  - - -  2~ 

z /  Y 
<!+Z 

zy y2 ' 

< c s l  l ogk  

and hence from this, (18, 6) and (18.4) we get 

( 1 8 . 7 )  Z~ < c52 log k. 

As to Z 3 we get from (18. 3 ) a t  once 

(18.8) Z ~ >  (~.)~ Z ( 1 - R e ~ ( l ) ) ~ e ( x ) ( 1 - t ~  ,~, ~ ( 1 - R e ~ ( l ) ) ~ Z o , x ) l .  
X l < t o ~  \ T / ~ I I C ) T  X 

From (18. 5) we get for the inner sum the lower bound (independently of  X) 

z log  z 
8~-- -- C52 T log k. 

But choosing in (5. 3) c~1 sufficiently large and using (14. 6) this is 

and hence from (18. 8) 

This and (18.7) give from (5.3) 

( 1 8 . 9 )  

and analogously 

log 
16re 

Z~ > log z 
16n " 

1 
Z3 > ~ log 

�9 -- i tO~ 

(k) (1 -- �9 -< -- log r. 
1 <ltol~x \ Z / ito 32n 

19. Next we determine Y so that 

! tQ]) 1 
(19. l) I~-- < 

I z n  q 

with the q defined in (14. 7) should hold for all l~to<=~ of all L(s, g)-functions 
belonging to mod k; here llxll denotes as usual the distance of x from the next 
integer. Owing to (18.5) and (5. 3) (if c~  is sufficiently large) their total number  
is at most 

39~(k) 
2 ~  z log 
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(19.3) 

and 

and hence Dirichlet's theorem assures the existence of a ~ with (19. I) and 
~c(k) 2~(k)  

( 1 9 . 2 )  q-$g- ~ Jog ~ < - - 7 < = q  n -~ log 

Then (18.9), (18.5), (14. 7), (14. 6) and (19.1) result 

Z5(Z  ) =defl <lrol~-*\/~Wo(~) 1 -- ito ~ 32n logz--  

- ~ ~ ( 1  ~j_) e'~ ( .,o,. [ 2 .  o( - -  - -  e 2n' - -  1) > logz 4n Z ,1.1t_l > 
l<ltol_T \ it e -- 32n q X<ltol - ~  l el 

log z 4n log z 
> 32n c28log s T  c s 3 l ~ 1 7 6  64n 

if only C2s is sufficiently large (in dependence upon c~).  Hence 

~' ( ~ )  e ' '~ l - -  logr  1 Z (1-- ~(l)_ ~o(x) > -  
q9 ( k )  1 < ltot ~ T \  i t  o 6 4 n  

/ 

(19.4, 1 ~ (1-~.( , ) )  ~-~e.~z, ( 1 - - ~ )  1ogz 
(k) ~ < - - -  z 1 < Itol - ~ \  it e 64n 

Owing to (19.2), (14.6), (14.7) and (5.3) we see at once that (16.4) is satisfied and 
7~ 

hence 7 + 2z can be used as co. Hence from (19.3), (19.4), (17. 7) and (5.3) we get 

5 n 

1 ~ (0 log 
(19.5) 2n d g ( r ) G  + _2~ dr < - 70--~- 

3 

5 r~ 

(19.6) 2-~ g ( r ) G  ~ (r) dr > log j_~ 
? -  2-~ 70n " 

3 n 

But from (19.2), (14. 6), (14. 7) and (5.3) we get 

further 

) _2~(k) l. log.c x 1 
"45 Y §  <4-5 ( l + q  ~ ) <  (log 3T) x~, 

/ ~(k) , 1 
3 n 3 ( - 1  ~ ~,og~, + q ) > (log 3 T) iT6" ~ - ~ -  > ~  
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hence from this, (! 9 . 5), (191. 6), (14. 6) and (5, 3) we obtain 

and 

1 
max ~g(r) > 80re log5 T 

1 
(log 3 T ) ~  ~r~( log3 T)tO 

1 
rain g(r) < - 80~r log5 T. 

J 
(log 3 T)130 ~ r ~ ( | o g 3  T) TM 

Going back tO the definition of g(r) we,obtain at once 

1 

(19.7) -1 max 1_ x-T(O(x,k,  1 ) ' r  > ~ 1  log5 T 
el(10g3130 T)<=x<=el(log~O T) 

and 

(19.8) rain 
1 l 

el(1Og~30 T)~_x<_el(log130 T) 

x-~(~(x ,k ,  1 ) -~(x ,k , l ) )  < 807r log5 T. 

20. In order to complete the proof of Theorem 5.2 we need the 

LEMMA IV. Putting for ll ~ 12 mod k 
# 

%,,2(~,, k) ~r [ {~(v, k, ~ , ) -~(v ,  k,/2)} dv 

we have for 2 ~ p < e l  (~]~g3--T) the estimation 
3 

tPt~t~(p, k) < c54# ~ log 6 T. 

Namely the ,,exact" formula of Riemann--Landau gives after integration 

i/e+ i ] 
(20.1) qJl,t2(P,k) 1 ~(i(12)_~(l l))~e(z ) 0(0+1)  <c55# log# logk  J ~ (~) 

taking in account (I5.3). We split the sum in (20. 1) according to 

1 
lt0[~ 1, 1 < [t o[~ log 2 7", Its] > ~  log2 T. 

The first sum is owing to (14. 5) and (5.3) and the functional-equation absolutely 

3 log3 T 3 

(20.2) < c  , , 3 -+42~1o  k T. 
- -  56/~ g <C57/~ z log6 

The second sum is owing to (14. 5) absolutely 

3 2 log3 r 3_ 3 

(20.3) -< c58# 2+4 '~ 
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Finally the third sum is using (5.3) 

1 log  k + log  3 T 
(20. 4) 2# 2 m a x  .~  L2 <:  C 6 0 #  2 

1 log  2 T 
Z t O > 4 o l O g 2 T  . 

-~: C61, 

Lemma IV follows from (20. 1), (20. 2), (20. 3), (20. 4) and (5. 3). 

21. Next we start from the identity 
x x 

fw'd2(P,k) l~176 \ # log  21 # ) - -  
2 2 

tIJhtz(x, k) ~b(#, k, l l ) -~(#,  k, 12) W l l l 2 ( X , k )  
- I d # -  xlog  2x - r d  # log  2# x log  2x 

x i, 

+j  {~'(., 
2 

- d 1 _ 
k ,  l l )  ~(#,k, 12)} ( - l ~ f i )  '/fi,tdx, k) 

x log 2 x 

+ 

But then we get for x_~2 

u(x,-k, 1)-u(x ,k , l )  O(x,k, 1)-~,(x,k,l)  < 1/x , 
logx  C62 ~ l O g  6 T +  

1 < ,,, ~/X 
+ § 2x log x log6 T 

roughly. From this, (19. 7) and (19. 8) the proof  of the second case is completer 

22.  As to Theorem 5.4  we have again to consider the cases I and II. In the: 
case I instead of II(x, k, 1 ) - I I ( x , k ,  l) we have to consider 

1 
II(x, k, 1) ~ ( k ) -  1 (t,k~tlH(x,,_ k, 1) 

I~v. 1 

r k, 6 ) -  r k, 19 ~(2, k, t l)-~(2, k, t2) 
-- + F log x log 2 

+ n ( x ,  k, li) -1-I(x, k , /2) - (17(2 ,  k, l l ) - n ( 2 ,  k, 12) ) 

valid for x=>2. This gives, using Lemma IV, for 2<=x<-_edl/l~g~3T ) the  
inequality 

H(x,k, 1)-I I (x ,k , l )  t/J(x,k, 1)-,p(x,k,l)  < 
f Fog;  

( 2 1 . 1 )  x 

f I~1'(#'  k)l '~_~ < 1 + -ITlt(x '  k)] + 4  - d # <  l og  6 T. 

2 
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a n d  t h e  p r o o f  c a n  b e  a c h i e v e d  o n  t he  l ine  o f  t he  p r o o f  o f  ( 3 . 4 ) - - ( 3 . 5 )  s t a r t i n g  
i n s t ead  o f  F(s )  in  (1 I. 1) w i th  t he  f u n c t i o n  

F*  (s) 0el I L '  
- -  - Z T (s, x). 

~ ( k )  ~*z0 " ~  

Simi l a r  r e m a r k  h o l d s  o n  case  1[. 

MATHEMATICAL INSTITUTE 
OF THE UNIVERSITY ADAM MICZKIEWICZ, 
POZNAIq 

MATHEMATICA L INSTITUTE 
EOTV~S LORAND UNIVERSITY,  
BUDAPEST 

(Received 28 November 1961) 

References 

A. E. INGHAM [1] A note on the distribution of primes, Acta Arith., 1 (2) (1936), pp. 201 211. 
S. KNAPOWSKI [1] On sign-changes in the remainder-term in the prime-number formula, Journ. 

Lond. Math. Soe., (1961), pp. 451 460. 
J. E. LIT~LEWOOD [1] Sur la distribution des nombres premiers, Comptes Rendus Paris, (158) 

(1914), pp. 1869 1872. For a detailed exposition see G. H. HARDY and J. E. LITTLE- 
WOOD Contributions to the theory of the Riemann zeta-functions and the theory of 
the distribution of primes, Aeta Math., 41 (1918), pp. 119 196. 

K. PRACHAR [1] Primzahlverteilung (Springer Verl. 1957). 
C. L. SIEGEL [1] Uber  die Classenzahl quadratischer K6rper, Aeta Arith., 1 (1936), pp. 83 86. 
S. SKEWES [1] On the difference ~r(x) Li x, Proc. Lond. Math. Soe., (5) (1955), pp. 48--69. 
P. TURAN Ill On some further one-sided theorems of new type in the theoly of diophantine appro- 

ximations, Aeta Math. Aead. Sci. Hung., 12 (1961), pp. 455 468. 
[21 Eine neue Methode in der Analysis und deren Anwendungen (Akad. Kiad6 1953). 

A completely rewritten and enlarged English edition, which differs quite essentially 
from the Chinese edition in 1956, will appear in the Interscience Tracts series. 


