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1. The investigations in the theory of  distribution of primes in various residue- 
classes mod k point in two directions. The first - -  and prevailing - -  tendency 
intended to exhibit u n i f o r m i t y  of the distribution. As its main result the relation 

(1.1) lim n(x ,k ,  1)_ 1 
-. +~ Li x ~0(k) 

can be considered, independently of l, where (/, k) = 1 further re(x, k, l) denotes the 
number of primes p N x with p -= l mod k and 

x 

L i x  = . 

2 

The second tendency intends to exhibit d i screpanc ies  of this distribution. The first 
indication in this direction is due to Chebyshev as early as in 1853 (see CnEBYS~EV 
[1]). He asserted 1 inprecisely expressed that ,,there are more primes -~ 3 mod 4 than 
= 1 mod 4. "The number of papers dealing with either trends on the theory was 
never very large ( n o t  due to the lack of interest); but as to this second trend, during. 
the century which passed since Chebyshev's announcement, only three papers were 
written, all dealing with Chebyshev's above mentioned assertion. Chebyshev's 
assertion stated exactly that 

p - - 1  

(1.2) lira z~ ( - 1 )  2 e - " = - ~ ,  
r ~ + 0 p > 2  

(p always reserved for primes), which if true, would allow only to assert that the 
preponderance of the primes -=3 mod 4 holds only in ,,Abel-summation's sense" 
or shortly ,,in Abel's sense". None of these three papers decide the falsity or truth 
of (1.2). What they could prove, was its equivalence with the (very deep) fact that 
the function 

(1.3) L(s)~er =~y ~ ( -1 ) "  
(2n + 1) ~ 

s = a + i t  

i But never published his proof. 
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does vanish or not in the half-plane tr >�89 necessity by Landau (see LANDAU [1]), 
the sufficiency by HARDY--DTTLEWOOD and simpler by Landau (see HARDY-- 
DTTLEWOOD [1], resp. LANDAU [2]). As to the direct interpretation of Chebyshev's 
assertion, i.e. whether or not the function 

(1.4) re(x, 4, 1 ) -  it(x, 4, 3) 

is negative for all x _->2, this was disproved by Littlewood (see HARDY--LITTLEWOOD 
[1]) who showed even that the function in (1.4) has an infinity of sign-changes. 
Another, much more special assertion of Chebysev 1. c. in this second trend, namely 
that for a suitable sequence xl <x2 < ... 

g(x~, 4, 3)-~z(xv, 4, 1) 
(1.5) ( l / ~  ~ -1 

\ l og  xv / 

was proved by Phragm6n (see PHRAGMI~N [1]) and then simpler by Landau (see 
LANDAU [3]) who extended it to general k; to this we shall return later. 

2. It is an old recipe that if you cannot solve a problem, try to generalize it. 
The generalized problems seem very natural; one wonders, why they had not been 
formulated before. They all are elucidating various aspects of the central tendency, 
to compare the distribution of primes in various related forms from the point of 
view of discrepancies; their totality is what we call comparative prime-number 
theory. We shall enumerate some of its most plausible problems (without gradation 
of course). 2 

PROBLEM 1. For which (l 1,/2)-pairs with I t r  does the function 

=(x, k, h ) -~(x ,  k, 12) 

change its sign infinitely often? 
If  the answer is positive for all (Ix, 12)-pairs (what is very probable) it is very 

plausible to raise the still deeper 

PROBLEM 2. If  e > 0  and arbitrarily small, further 11 r arbitrary, do there 
exist two sequences 

X 1  < X 2  < , . .  ---~ -~- c o  

such that 
y l < Y 2 - < . . . ~  +oo 

I 

~(x,., k,/1) 7t(xv, k,/2) > x ,  

and 

1 

~(y~, k, 1,) - 7r(y~, k , /2 )<  - y ,  ? 

2 k is thought always fixed. 
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1 

The use of the function x ~-* is motivated by the fact that if the so-called Rie- 
mann Piltz-conjecture is true (see below) then the inequality (1) 

In(x, k, l l ) - ~ ( x ,  k, 12)1 = O x ~-+~ 

holds (O-sign for x---~-~ ). 
If  the answer to Problem 2. is positive for all (11 lz)-pairs, then the oscillatory 

character of n(x, k, l l ) -  n(x, k, 12) is much clearer if the following problem is 
solved. 

PROBLEM 3. If  e > 0  and arbitrarily small then for what hk(T)>0 can one assert 
that for each (11,12)-pairs with 11 #12 and T->I the inequalities 

1 

max {re (x, k, ll) - zc (x, k, 12)} > T 2 
T~_x~_T+hk(T)  

and 
1 

min {rt(X, k, ll) - n ( x ,  k, 12)} < -TS- -~  
T ~_x~_ T + hk( T) 

hold ? 
An explicit hk(T) in the solution of Problem 3. would imply of course that all 

functions re(x, k, 11)- re(x, k, 12) change sign in the intervals of  the form 

(2. 1) (T, T+ hk(T)). 

But this sign-change is obviously accompained by a ,,very large" oscillation; pro- 
bably asking just for a sign-change the interval (2. 1) can be very much reduced. 
So arises the 

PROBLEM 4. For  which gk(T)>0 can we assert that for each (11 , I2)-pairs with 
l l # l  2 and T_~I all functions 

(2. 2) n(x, k, l x ) -  zffx, k, 12) 

change sign at least once in every interval of the form z 

T<-_x~T+gk(T) ? 

In the case of a positive answer to Problem 4. one can get automatically an 
upper bound a(k) depending only upon k such that for 1 <=x<= a(k) all functions 
in (2. 2) change their sign. This bound is most probably rather rough and direct 
approach is necessary to improve it. So we come to the 

PROBLEM 5. For which a(k) can we assert that for each (l 1 , 12)-pair with I 1 # 12 
all functions in (2. 2) vanish at least once in 

1 <=x<=a(k) ? 

The positive solution of problem 4. gives of course a lower bound for 
Wk(T, I1,12), for the number of sign-changes of  

~(x, k, 11) -~(x, k,/2) 

a A modified form of problems 3 and 4 arises when we wish to assure a sign-change in the 
interval (2.1) only for sufficiently large T's. 
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in the interval 

(2. 3) 0<x<=T;  

but this is most probably rather rough. So we come at once to the 

PROBLEM 6. What is the asymptotical behaviour of Wk(T, I1,/2) if T-~ +~o ? 
As told, LITTLEWOOD showed that the function in (1.4) changes infinitely often 

its sign but Chebishev's assertion (1.2) may be correct. One feels that Chebyshev's 
vague formulation could also be interpreted so as 

(2. 4) lira _N(Y) = 0 
y--* +,~ Y 

where N(Y) denotes the number of  the integer m_-< Y with the property 

(2. 5) ~z(m, 4, 1) ~_n(m, 4, 3). 

Though numerical data are in such problems never too convincing, Shanks remar- 
ked (see SHANKS [1]) that (2. 5) is not fulfilled for 

m~26860, 

then it is fulfilled for m-=-26861 and m =26862 and again false for 

26863 ~ m ~ 616768, 

which indicates a strong preponderance for those rn's for which zffm, 4, 3) > n(m, 4, 1). 
Generalization of this leads at once to 

PROBLEM 7. For fixed (ll, 12)-pair, 11 ~ 12, what is the asymptotical behaviour of 
Nt, t2(Y) for Y ~  +co, where Nu2(Y) denotes the number of integers m ~ Y with 

(2. 6) n(m, k, ll) >=n(m, k, 12) ? 

Shanks's paper leads to a further interesting and plausible problem. To illustrate 
the problem for k = 8, say, let us consider the game, played by four players, called 
,,1", ,3" ,  , 5 "  and ,,7", the player ,,j" scoring a point when by the enumeration 
of all primes 4 a prime ~ j  mod 8 occurs. According to the calculations of Shanks 
the player ,,1" plays rather poorly, being on the  last place after the first 7z(106) 
steps. Will this always be the case? If  not, will the player , , l"  infinitely often take 
the lead? In a generalized form we assert the 

PROBLEM 8. (Race-problem of SHANKS-R~NYI). For each permutations 

l l , / 2  . . . . .  l~(k) 

of the reduced set of residue classes rood k does there exist an infinity of integer 
m's with 

~(m,k, lz)<zr(ra, k, 12)<...-<Tz(m,k,l~(k)) ? 

4 In increasing order, 
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As well-known LITTLEWOOD proved - -  in contrary to an assertion of Riemann - -  
that for a suitable sequence 

x i < x ~ <  ... 

of integers the inequality 
it (x') > Li x" 

holds. An interesting generalization would be to prove that even the inequalities 

rc(x', 4, 1)> 1 Lix~ 

(2.7) " l  

~z(x,~, 4, 3 )>  2 Lix• 

hold simultaneously. More generally we state the 

PROBLEM 9. Does there exist an infinity of integer roy's such that for j =  1, 2, ... 
.... 9(k) simultaneously 

(2. 8) z (my, k, l j) > ~ Li m v 2 

A natural continuation is the 

PROBLEM 10. If  the answer to Problem 9 is positive (which is very probable), 
what are the distribution-properties of the rn~-sequence ? In particular what upper  
bound can be given for the smallest m~ with (2.8)? 

3. The above problems referred to zt(x, k, l). Chebyshev's assertion gives the 
impression that turning to ,,Abel-type" theorems the deviations become more 
significant. One can expect namely generally that there are , ,more" primes in the 
residue-class 11 mod k than 12 mod k if and only if the number of incongruent solu- 
tions of the congruence 

(3.1) x 2 - 11 mod k 

is less than that of the congruence 

(3.2) x 2 ---= 12 mod k. 

Hence all the previous problems remain (or even become more) interesting, replac- 
ing re(x, k, l) by 

e _ p r  
p~ lmodk  

(3.3) 

and Li x by 

(3.4) ~ e-nr f e-rV 
i1 = 2 log n or 1-~ dv 

2 

so we get the problems 11--20. Of course the wording of these problems must be 
understood mutatis mutandis; e.g.  
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PROBLEM 12. I f  e > 0  and arbitrarily small, further the number of solutions of 
(3.1) and (3.2) are equal, do there exist two sequences 

such that 

and 

r i > r ~ > . . . ~ O  

r~ >r'~> . . . .  0 

1 

, [1"~ 7 - *  
~Y e - P r ; -  Z e - P ; > [ . - 7 , |  

p =-- I1 r l lod k p ~12 rrlod k ~x r v ] 

1 

p = l l m o d  k p ~ 1 2 m o d k  \ r" ] 

Though the Abel-summation seems to be a more suitable tool for exhibiting 
deviations in the distribution of primes in residueclasses mod k, working with it 
causes a lot of numerical difficulties which increases rapidly with k. Hence it is 
still more interesting to find the ,,proper" summation-method which can show up 
the deviations with the least trouble. We shall not formulate this point of view 
explicitely in problems. 

As well-known in the theory of primes, the investigations are much more directly 
carried out on 

(3.5) O ( x , k , l )  dAr ~ '  A(n) 
n ~ X  

n=_lmodk 

~or 

,(3.6) I I ( x , k , l )  de=f ~ A(n) 
,~x log n" 

n=_lmodk  

The corresponding problems we label as problems 21 40. resp. 41 60. Their 
investigation runs generally parallel but there are problems which we can solve at 
present only for 0(x, k, l). 

We shall not enumerate the analogous problems concerning the distribution 
o f  primes in binary quadratic forms with fixed discriminant or of the prime ideals 
of a fixed field in various idealclasses. 

4. Previously we spoke about the results explicitely existing in the literature; 
now we review some of these which could have been deduced by previously known 
methods. The main tool is the following classical theorem of LANDAU. If  A(x) is 
real, 

(4. 1) 
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is regular  for  o-:--1, A(x) does not  change its sign for  x > x  o and g(s) is regular  on 
the segment s > 7 ( <  1), then g(s) is regular in the half-plane a > 7. As to p rob lem 21 
one could start  f rom the formula  5 (valid for  r >  1) 

(4. 2) ~,(x, k, l l ) - ~ ( x ,  k, 12)+_ ctx 2 " dx 
X X s 

1 

_ _ L "  c x  1 x) • 
~0 qc) s 1 s-~+~ 

Let  k be such tha t  for  all L-functions m o d  k 

(4. 3) L(s, X) # 0 on the segment  0 < s < 1. 

Fo r  k[24 e. g. this is the case since for k < 2 2 7  Rosser  proved  (see ROSSER [1]) 
tha t  no L(s, Z) with real characters vanishes on this segment and for  k 24 there are 
only real characters  rood k. In  this case the funct ion on the right o f  (4. 2) is regular  
on  the real segment  � 8 9  e < s < 1 ; hence if for  an (It ,  12)-pair and a ci for  x > x o 
the inequali ty 

1 

(4. 4) ~(x ,  k, l t ) -  ~ (x ,  k, 12)+__ ClX ~ - ~  > 0 

would be true then Landau ' s  theorem in (4. 1) would result that  the function 

Z p  
(4. 5) ~ (~(/2) - )((/1)) ~ -  (s, X) 

X :~ 2"0 

is regular for  0. > �89 - 8. 
Let  first l 1 = 1. Since owing to the funct ional-equat ion each L(s, Z) has zeros 

in the half-plane 
1 

(4. 6) a -->_ ~-,  

choosing ;~* so that  X*(12) ~ 1 each zero of  L(s, Z*) in the half-plane (4. 6) is obviously 
a pole of  the funct ion in (4. 5). This being in contradict ion to (4. 5) we obtained 
t h a t  under  supposi t ion of  (4. 3), chosing ct arbitrari ly we have infinitely often 
(xv, yv positive integers, l ~  1) 

1 

(4. 7) tp(x~, k, 1 ) -  ~(x~,  k , / ) <  -ClX v 

and  analogously 
1 

(4. 7) ~k(y~, k, 1 ) - ~ ( Y v ,  k, l )>c ty~  

5 By c j, c 2 . . . .  we denote always positive explicitely calculable, numerical constants. By 
al,  a2 . . . .  we shall denote quantities depending exclusively upon k. 
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In  the general case however  this reasoning is functioning only even suppos ing  
(4. 3) when there is a p with the Re  p =>�89 and  

(4. 8) ~ '  (~(11) -- ~(I2)mQ(g) ~ 0 
Z 

where the dash in (4. 8) means  tha t  the summat ion  in (4. 8) is extended over all 
charac te rs  X with6 

(4. 9) L(0, )0 = 0 

and me(x) stands for  the multiplicity of  the 0-zero. However  simple looking we 
could not  ascertain the existence of  such a O for  general k, even supposing the t ruth  
of  the conjecture of  R iemann- -P i l t z ,  according to which no L(s, )0-function vanishes 
in the half-plane 

1 
(4. 11) ~ > ~ .  

Fo r  special k-values, such as for  kt24 for  example,  owing to a communica t ion  o f  
DR. P. C. HASELGROVE there is such a 0 with the p roper ty  7 (4. 8) (4. 9); hence fo r  
k[24 the inequalities (4. 7) hold  wi thout  any conjectures (and even (4. 10)). As to  
H(x,  k, l) the analoga  of  all results, deduced in this 4. for  O(x, k, l), can be proved  
with the exception oJ (4. 10), A glance at  the above proofs  shows at once this princi- 
pially cannot  give finer details of  the oscillatory character,  nothing concerning, say, 
the deeper problems 23, 25 or 43, 45, resp. 

A modificat ion of  Landau ' s  theorem in  (4. 1), due to P61ya s (see P6LYA [1]) 
would give, denoting by Uk(T, 11,/2) the number  of  sign-changes of  

(4. 12) O(x, k, l l ) -  ~b(x, k , /2)  

for 1 <= x <= T, the inequali ty 

1 
(4. 13) l im ~ Uk(T, lx, 12):>0 

T--,+~ lOg 1 

supposing (4. 8) (4. 9) and  also 

(4. 14) L(s, Z) # 0 

for 
0 < o - < 1 ,  Iti<-A(k) 

6 One could also prove by a proper modification that for an infinity of integers xv, Yv ever~ 
the inequalities 

(4. 10) ~(xv, k, 1)--~p(xv, k , l )>al  V~  
and 
(4. 10) ~0(yv, k, 1) -- ~p(yv, k, l) < -- gtl Vx-~ 

with a suitably small a~ hold, supposing only (4. 3). In the general case the analogon of (4. 10) hold 
supposing (4. 3) and the inconvenient (4. 8)--(4. 9). 

7 Even each L (s, z)-function mod k with Z ~ Z0 has zeros, not common with any other L(s, Z) 
mod k. 

s According to a remark of P6LYA (see INGHAM [1], p. 202.) the proof contains a gap, easy 
to fill out. As far as I know, this was performed so far by nobody. 
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i. e. for kl24 unconditionally. This again gives principially nothing for the above- 
mentioned problems. This method does not work for H(x, k, l) and gives nothing 
for Vk(T, l 1 , 12), for the number of sign-changes of H(x, k, l a ) - H ( x ,  k, 12) in 
l<=x<-T. 

The only method which can be adopted to the study of the finer details of the 
oscillation of ~k(x, k, Is) -~k(x, k, 12) is due to Ingham (see INGHAM [1]), which he 
applied to the study of sign-changes of 7r(x)-  Li x. His method (an improvement 
of  Littlewood's proof) would result 9 

(4. 15) 

and 

max {~(x, k, 1)-~k(x, k, l)} >]/T-loga T 
T~x~_a2T 

rain {~9(x, k, 1) - ~ ( x ,  k, l )}<  - t/Tlog3 T 
T ~ x ~ a 2  T 

if only T:>a a, (4. 14) holds and moreover all zeros of all L-functions rood k are in 
the half-plane tr <_- | (<  1) with attained equality-sign (e. g. if Riemann-Piltz conjecture 
is true); similar result could be deduced for H(x, k, 1 ) -  H(x, k, l). We do not see 
how this method can give any results even supposing the truth of the Riemann 
Piltz conjecture, for the case when none of ll and 12 a r e  1. 

5. So far we sketched the results to be found implicitly in the literature concern- 
ing our problems with ~b(x, k, l) and II(x, k, l). What is the situation concerning 
n(x, k , / ) ?  Since we shall need it often in the sequel, we shall denote throughout 
this series the number of incongruent solutions of the congruence 

(5. 1) .X 2 --: l mod k 

by 1~ Nk(l). Now first we remark that if 

(5.2) Nk(ll) = Nk(12) = 0 
then we have 

1 

(5.3) II(x,  k, l i ) -  II(x,  k,/2) = ~Z(X,  k, l l ) -  7t(x, k, 12)+ O(x ~)  

and hence one would think, this gives a smooth passage from results concerning 
II(x, k, ll) - I I ( x ,  k, 12) to 7~(x, k, ll) - n ( x ,  k, 12). However as far as we see, the 
classical methods furnish only the following theorems. 

Supposing (4.3), further with some a 4 

(5.4) L(s, Z) ~ 0 for a > 1 - -  a 4 

and also Nk(1)=Nk(l ) ,  we have for an infinity of positive integers x v and yv the 
inequalities 

1 

(5.5) ~(x~, k, 1 ) -  zc(x~, k, l ) > x  2 

9 We shall denote always el(x)-=e x and e,,(x)=e,,-l(el(x)) further loglx-----logx and 
logvx = logv - 1 (log ~x). 

lo We remark the well-known fact that the value of Nk(1) is either 0 or Nk(l) if only (I, k) =- 1. 
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and 
1 - - g  

(5.6) g(yv, k, 1) - n ( y ~ ,  k, l)<: _yZ  

The corresponding inequalities hold for the case of  general (/1,/2) but we have to 
require now 

N(la) = N(/2) 

and also the horrible requirement (4. 8) (4. 9); however for the important case 

(5. 7) Uk(ll) = Nk(Iz) = 0 

the requirement (5.4) can be dropped. 
This theorem with all of  its ramifications follows from the H-analogon of (4.7) 

at once; we could not use (4. 10) for a similar purpose (which would make the restric- 
tion (5. 4) superfluous). For  k 24 and for the case (5.7) the theorem (i. e. the analoga 
of (5. 5) and (5. 6)) holds without conjectures. 

The method of LITTLEWOOD -INGHAM would allow to prove the following 
theorem. 

Supposing (4. 14) and also the existence of an ~<-a5 <1  such that 

(5.8) 

but for a suitable real to 

(5.9) 

then for T:>a 6, all functions 

L(s , z )#O  for o ->a  5 

L(a5 -v ito) = 0, 

n(x, k, 1) - n ( x ,  k, l) 

change their sign in the interval 

(5. 10) T<-x<=a-~T. 

Recently Skewes (see SKEWES [1]) solved, using also the ideas of  LITTLEWOOO 
and [NGHAM, the problem (related to ours) to give a numerical upper bound for 
the first sign-change of 7z(x) - Li x. al I t  is not impossible that this method can also 
lead to some results in the investigations of the finer oscillatory properties of 
re(x, k, 1 ) -  zc(x, k, l) (but certainly to none in the general case). 

One has still to remark that the fact that for the finer distribution-properties 
of  the primes in residue-classes the numbers Nk(l) have a significance, was observed 
by LANDAU (a hint to it was made in LANDAU [1]). He proved namely (to mention only 
the most elegant case) that supposing (4. 3) we have to an arbitrarily small ~ > 0 an 

infinity of  positive integers xv such that  

7r(x~, k, l 1)-Tr(xv, k, 12) Nk(12)--Nk(l~) 

( \log xv/  [ 

11 For an alternative simple proof see the forthcoming paper of the first of us in Journal 
of London Math. Soe. 
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As the case k = 4 shows, the really deep result would be if Nk(12) --Nk(/1) could b e  
replaced by Nk(lO-Nk(lz) in (5. 11). 

6. In the last years the second of us observed that a certain extension of the  
classical theory of diophantine approximation leads to a large number of applications 
in the analysis and in the analytical theory of numbers (see TURIN [1]). The applica- 
bility of these methods and in particular of what is called second main theorem, 
in the comparative prime-number theory was shown by the first of us (see KNA- 
POWSKI [1]). In a lecture in Gtittingen in 1957 the second of us risked the assertion 
that it is possible to find ,,onesided" forms of the main theorems which would 
enlarge considerably the number of the numerous applications and in particular 
applicable t o  Problem 5 of this paper. Such one-sided theorems have been proved 
since (see TURIN [2], [3]); their applicability for the prime-number theory was m a d e  
possible by a lemma of the first of us (see his forthcoming paper [2]). This series: 
will deal with applications to the comparative prime-number theory and will consist 
of 8 paperswith  the following sub-titles: 1~ 

II. Comparison of the progressions = 1 and ~- lmod k. 
III. Continuation. 
IV. Paradigma to the general case (k = 5 and k = 8) 
V. Some theorems concerning the general case. 

VI. Continuation. 
VII. The first sign-change. 

VIII. Chebyshev's problem for k =8.  

Generally speaking we intended to make the papers self-contained; only I I - -  
III resp. V--VI  are to a certain extent dependent of each other. This will explain 
a few short repetitions. 

7. The present state of  the comparative prime number theory, as it was sketched 
in 5, is rather rudimentary. This implies that also conditional theorems are of interest. 
Beside the conjecture of Riemann--Piltz we shall prove some theorems supposing 
only a weaker form of it, namely that for a sufficiently large 13 Cz for Z ~ Zo 

1 
(7.1) L(s ,z )~O for tr>-~-, ]t]<=ezk 1~ 

A still weaker assumption, we shall use sometimes, is that made in (4. 14); we shall' 
call it shortly Haselgrove-condition since he was the first who determined explicit 
values of A(k) for k]24. It would be very interesting to prove at least that the n u m b e r  
of k's satisfying Haselgrove's condition is infinite. Of course there is no principal 
difficulty to determine A(k) for any fixed k (for which A(k) exist at all). As we know 
from a written communication of MR. HASELGROVE, MR. D. DAVIES has determined 
the corresponding values for k = 5 ,  7, I1 and 19; the interest of these cases is, that 

12 We gave an account of the main results in two lectures; one at the Mathematical Congress 
in Leningrad on 4 July 1961 and one at the DMV-Tagung in Halle, on 21 Sept. 1961. 

13 It would be of importance to decide whether an aa can exist with the property that the: 
truth of the full Riemann--Piltz conjecture follows if no L(s, Z) mod k vanishes for ~ > �89 rt] ~ as. 
If yes, then it is still very unprobable that as = c2k 1~ can be chosen; so, that (7.1) seems to be weaker: 
than Riemann--Piltz conjecture indeed. 
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now we have complex characters too. In paper II we shall prove among others that 
if for a k Haselgrove's condition (4. 14) is fulfilled and 

( ( 1 ) )  
~(7.2) T >  max e s (c3k),e 2 

with a sufficiently large ca then for all (1, k ) =  ] the inequalities 

n(x, k, l ) - n ( x ,  k, l) 1 logs T (7.3) max > 
e 100 

,and 

(7. 4) min n(x,k, 1 ) - n ( x , k , l ) < _  1 l o g sT  
lO0 

hold (i. e. for k]24 or for the Davies-values unconditionally). This means in a little 
weakened form that for T's with (7. 2) the interval 

1 

(7.5) e 1 (log3 i-T6 T) <_- x <= T 

contains certainly values x'  and x" with 

n(x',k, 1)-n(x ' ,k ,  1)> 1 1/~ x" 
100 log x '  logs (7.6) 

and 

- -  X ~ (7. 7) n(x", k, 1 ) -  n(x", k, l ) <  100 logx  " l~ 

which are - -  at least when the Riemann Piltz-conjecture is true - -  not ,,very far"  
f rom the best-possible inequality 

(7. 8) In(x, k, 1 ) - n ( x ,  k, l)] = O(]/xlog x) 

and - what is the most essential with the localization (7. 5). For k124 - -  i. e. 
also in the Chebyshevian case k = 4 we emphasize that a theorem of this type 
is proved here for the first time without any conjectures; the result (5. 10) indicates 
however that probably the interval in (7.7) can be replaced by (T, a9T). 

8. As to the case k = 4 we make a slight digression with respect to Chebyshev's 
assertion (1.2). We may write it in the form 

(8.1) lim (1 - e - 0  ~ {(n(n, 4, 1)--n(n,  4, 3)}e -"r = - ~ .  
r ~ + 0  n = 2  

I f  we could find a proper sequence 

r 1 z ~ r  2 : >  . . .  ---~0 
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with 

(8.2) l i r a ( 1 - e  -rv) ~ (zc(n, 4, 1)-r~(n, 41 3)}e-"rv > - c 4  
V - ~  /1=2 

this would disprove owing to Hardy--Lit t lewood the Riemann--Piltz conjecture 
for the function (1.3). Now we suppose (8. 1) would be true, Then according to 
Landau's mentioned theorem the zeros of  (1.3) are in a<=�89 and hence (7. 8) holds. 

Now let T be large and we choose as r v the 1-7 (x' from (7. 6)); then the ,,essential" 
x 

part of  the sum in (8. i) is that with n<<x" log x'. Now owing to (7. 6) the terms 
with an n-index in a ,,large" neighbourhood of n =[x']  have a ,,large positive" 
contribution and the further terms which can spoil it, are stipulated by (7. 8), further 
these ,,large positive" contributions are owing to (7. 5) ,,not too far" from each 
other, one could think choosing r this way, the corresponding rv-sequence could 
prove (8.2) even with c 4 = 0. As P. ERD6S remarked by an example this reasoning 
alone cannot l ead to  a disproof of (8.1), even if the interval (7. 5) could be replaced 
by (T, es T), but a still deeper study of the oscillatory character of zr(n, 4, 1) -n (n ,  4, 3) 
could perhaps increase considerably the ,,positive contribution" of  the terms. 

9. Returning to the preliminary discussion of some of our results we remark 
that (7. 5) gives only a very weak lower bound for Wk(T, 1, l), defined in (2. 3). In 
paper III we prove the inequality 

(9. 1) Wk(T, 1,l) >k-c5  log4 T 

for T's in (7. 2) and all l's, if only the Haselgrove-condition is fulfilled (i. e. e .g.  
for k[24 unconditionally). A similar estimation holds for the number of  sign-changes 
of  

1 
(9.2) n(x, k, 1 ) - - - ~  n(x). 

As to theorem (7.3)--(7.4)  we prove that in the case when 

(9. 3) 

we have for 

(9.4) 

the much sharper inequalities 

(9. 5) 

and 

(9. 6) 

N,O)  = N,(I),  

( T > m a x  c6, e2(k), e2 ~ 

( l ~ 1 7 6  
max {n(x,k, 1)-n(x,k,l)}>l/Tel - 4 3  logzT 

T~x~T 

min {rc(x,k, 1)-n(x,k,l)}<-l/Tel(-43 l~176 
T~x~T log 2 T ' 

Acta  Mathemat ica  X I I I / 3 - - 4  
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if only Haselgrove-condition holds for  k. This shows of course at once that in the 
case (9.3) - -  which occurs very often, e.g. when k is prime - -  in (9. 1) one can 
replace log~ T by log2 T. 

10. The case, when none of the l's are 1, is, as told, much more difficult. This 
case is dealt in the papers IV, V, VI and VII. In paper IV which is a sort of  preludium 
to the difficult papers V, VI we round of f  the case k = 8 completely without any 
conjectures by showing that for T : ~ c  7 we have 

( l ~ 1 7 6  
(10. 1) max {n(x, 8, ! i ) - n ( x ,  8, 12)} >I/T-el --23 logz T 

T~_x~T  

if  only 14 l 1 ~ l 2 ~ 1. In paper V we prove among others for 

1 20 (10.2) T>max{e2(cak2~ ) }  

for all l 1 # /2  the inequality 

,/~- { ~,, log Tlog 3 T~ 
(10.3) max {H(x,k, li)-II(x,k, lE)}>viell-zz  l ~  ] • \ og 2 1 

T3 ~x~T  

if only both Haselgrove-condition and (7. 1) hold for k. Analogous theorem holds 
for ~k(x, k, l) too. If  Nk(ll)=Nk(12)=O then this gives at once the corresponding 
theorem for n(x, k, l) too; nevertheless in paper VI we prove the same theorem if 
only 
(10. 4) NR(ll) = N,,(12). 
This is perhaps the deepest among our theorems, together with the theorem of the 
paper VI which asserts, as partial response to the Gtittingen-problem 5 that at fixed 
k all functions 

k, 10 k, t2) 
change sign in the interval 

(10.5) l <= x<-_ max (e2 (kcO, e2 (A~k)3 ) ), 

supposing only the truth of  Haselgrove-condition. Finally in paper VIII we resume 
Chebyshev's problem for k = 8 in a slightly modified form and settle it in the sense 
of Hardy--Li t t lewood~Landau.  No new ideas are necessary in proving that the 
truth of the relation 

(10.6) lim { 2 logp "e -p~-  ~ logp.e-pX} = _oo 
r ~ + O  p=- lmod  8 p-zlmod 8 

for all l #  1 is equivalent to the non-vanishing of all L(s,z) functions rood 8 with 
Z ~Zo for a >�89 for the principially new case (for which there is no analogon if 

14 Since none of 11 and 12 are distinguished to the other, changing them we get automat- 
ically the corresponding negative upper bound for min {z~(X, 8, li) -- n(x, 8, 12)}. 

TI/3-<- x~T 
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k = 4 )  we prove without any conjectures that for 0 < 6 < C l o  ' and 11~l 2 among 
3, 5, 7 the inequality 

(10.7) max { ~ logp.e-p~- ~ logp.e-px}> 
~_x~8�89 P=-llm~ p=-12modk 

holds. 

1 l 
log -~- log 3 -~ 

--22 
1 > ~/6 el log2 ~- 

11. One can observe that all of our results relating to general k needs some 
assumptions, the weakest among them being Haselgrove's condition. Is this a neces- 
sity or only a defect of the method ? One can prove easily that ~k(x, k, 11) -~p(x, k, l~) 
is approximately 

1 - x ~~ 
(11. l) ~(k) x~0 (~(/2)'Z(12)) ~ax) -2-"  

Itol~--x 3 

Now let us suppose e. g. that there is a positive #o > �89 which is a zero of an L(s, g') 
mod k with X' ~Zo and with a 6 > 0  all other zeros of all L-functions mod k are in 
the half-plane a <- #o - fi (a possibility which is not excluded so far). This Z' is obvi- 
ously real. I f  If and l~ are such that x'(ll) ~ X'(I~), then the expression in (11. l) is, 
as easy to see, 

1 ~0 p , , i X 0 - $  2 
~0(k) (,Z (12)--Z (ll))-~o+O(x~ log x), 

which means that ~(x, k, l') - ~(x, k, l")  does not change sign if x sufficiently large. 
This shows at least that the existence of real roots of L-functions is intrinsically 
connected with the oscillatory character of ~(x, k, l l ) -  ~9(x, k, 12). 

Finally, we remark that the above sketched problems are only a part of a theory 
which may be called a comparative theory of numbers; the similar questions have 
an interest also for squarefree numbers, for numbers with a fixed number of prime- 

factors, for more general number-theoretical functions, for the n's with ~ kt(v) >0  
v ~ n  V 

etc. 
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