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(cf. the arguments at the end of § 21). Using (32) and the integral formuly,
for ¢(s, ) (cf. (85)) we deduce that £'(y, x) <D™, Combining this with
the previous inequality we get (56).

By a more careful account of the number of squares ¢ whose norm
does not exceed D? it can be proved that 8 > ¢ D™ for any » > }(n+3)
and ¢, = ¢,(»). But for our prospective arithmotical applications we can
do ag well with (56). _

The theorem of §1 is an immediate consequence of Lemmas 9-17,
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On sign-changes of the difference =(x)—lix
by
S. KNAPOWSRKI (Poznat)

1. Let »(T) denote the number of sign-changes of the difference
ni(w)—liz for 2 < » < T. Littlewood ([7]) proved in 1914 that »(T') tends
to infinity together with 7. However Littlewood’s method, as it stands
in [7], does not provide numerical results and in particular does mnot
enable one, even on the Riemann hypothesis, to find an explicit upper
bound for the position of the first sign-change of =(z)—liw. Such nu-
merieal estimation hag been performed only a few years ago by Skewes [8],
the result being

(1.1) »(expexpexpexp(7.705)) > 1.

A conditional estimate for the order of growth of »(T) has been
obtained by Ingham [4]. His theorem reads as follows:

If there emists a C-zero g, = 04+ ity such that [(s) # 0 in the half-plane
o> oy, then

. »(T)
(1.2) ]T%}o@, >0.

I proved recently [5] the following theorem which leads, when
combined with that of Inmgham, to an wunconditional lower estimate for
»(T):

Let gy = fot+ive, Bo> %, 70> 0 be an arbitrary (-zero. Then, for
I > max(cl,expexp(logzyo)), ¢, @ mumerical constant, we have the ine-
qualities

max {I1(t)—1it} > TPexp (— 15 —M—-) ,

9) e<t<T Vloglog T
min {/I(t)~lit} < — T%exp (~ 15—08T
2<t<T Vioglog T
where
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Having got this we obtain easily

»(T)

(1.4) 1*3_%10 loglog T

without any unproved conjectuxe. In fact, in the case of the Riemann
hypothesis being true (1.4) follows a fortiori from (1.2) while in the opposite
case the inequalities (1.3), applied with some g, = fy+dyy, Bo > %, give

max (z(v)—liz) >0,

min (z(p)—liw) <0,
T<a<T

<o
valid for all sufficiently large 7', which again imply (1.4).

The aim of this paper iz to estimate »(T) explicitly from below.
It is clear that (1.4), however unconditional, is not numerical and having
it one cannot determine an explicit finite interval in which = (w)—liz
changes sign, say, at least 100 times. Such result will be contained in the
following

THEOREM. We have

(1.5) W(T) > ei”loglogloglogf
for
(1.6) T > expexpexpexpexpsb .

I did not care much about the numerical constants in (1.5), (1.6);
certainly they can be much improved, and probably even so as to cover
the quoted result (1.1) of Skewes. Skewes e.g., with a view to making
his bound possibly small, has done a certain amount of computations
relating to some numerically known {-zeros (actually to those with po-
sitive imaginary parts < 500, 269 in number), of which no use will bo
made in the present paper. What is more, on choosing the parameters
occurring in [5] in a suitable way, one might put the theorem concerned
in a form much more useful for numerical purposes which would in turn
certainly improve on (1.5), (1.6).

So much for the numerical constants involved. As to the functions
loglogloglog 7' resp. loglog T in (1.4), it would be desirable 1o replace
them by “better” ones, i.e. by functions going more quickly to infinity.
This seems to be quite possible and the simplest way for doing so would
depend upon finding inequalities similar to (1.8) but with ¢ ranging in

a smaller interval, e.g. [Texp (—mlg%gflogloglog_’l’), 1’]. Such question

is, after all, interesting in itself and T hope to return to it in another
paper.

I close this introduction by listing a number of numerical regults,
all relating to the {-zeros, of which use will be made in the following.
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Lel o = -4y denote the zeros of {(s). Let 414y, be the {-zero with
minimal positive y, (which is known to be 14.,13...). Let N (T;) be the
number of ¢’s with 0 < <1, 0 <y < T,. Suppose T, > y,. Then

T, T
(1.7) N(Ty) = z—nl-logé;c—lé—l—R(Tl), where ,
|R(TY] < (0.187)log T+ (0.443)loglog T, +4.350
(see [1], also [8], p. 50).
11
S — . B0).
a8 D S < gmlogTs  (see (8], - 50)
o<y<T
1 1 logT, . 50
(1.9) 2"} < e —TT (see [8], p. ).
y=T1
1
(1.10) 2?< 0.0233  (see [8], p. 50).
>0
\ 1 2¢
(111) Put R(w, Ty) = Z 2 Then
l7|>T "
|R(z, Ty)| < % for  @3>expl0s, T,> at
(see [8], p. B1).
(112) If [y| <104 0<p<1, then =% (see [6])..

2. T is supposed to satisfy (1.6) throughout. Write
X =V/loglogT (> expexpexp 34).

Tn this and in the next section we shall deduce (1.5) from the following
conjecture: .
(O) Every -zero ¢ = f+dy with 0< B <1, |y|< X3 is such that

9
I6—3 < sxrogx -

Actually we shall prove more, namely, establish the inequality

1
(2.1) »X) > 6—3510g10g X—1.

In § 4 we shall deduce (1.5) from (NO)—the negation of (Q).
We start with a number of lemmas. First of all let us define, as usual,

—0)+y(@+0)
p@) = A, ~ el Oty £0)

n<e

wla) = [plwydn = D (@—m)A(n).
1 n<e

Yol®)
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LeEMMA 1. Without any hypothesis

(2.2) lp(2)—3a?] < Yo for 2<aw<< el
On the conjecture (C)
(2.3) () — 3| < dpa®  for E<a<< X,
Proof. Using the formula
. getl I I pr—2r
“*”Z"Zeml) PO = D
and (1.9), (1.10) we have
o+l e-1/2 “1 pe—1/2
2082
Z'e(@Jrl l Z ‘9(9+1) Al ele+1)
1 3logX 1
< Xzsxalogxz +Xa/47_17 —5 < 35
whence (2.3), as )
%(0) —log2r, '%(—1).< 1,

w2 3 1 3
Z r(@r—1) <r_212r(2r——1) <z

Similarly, using (1.9), (1.10), (1.12), we obtain

_12 ol ‘<w i-i-ﬂw Zl<005mlf’3+w 4log 10
1 ]
e(e+1) o e 10
3600
60+10 005 4 = 44,

and (2.2) follows.
LEMMA 2. Write
Py(o) = (IT(2) ~ lio) - YO =2

logo
On the conjecture (O)

it

2.4
(2.4) | P w)]\zlogzm

for L X002,
Proof. Putting

Po) = {H(m)mlim}—'ﬁ({%)g;;f

icm
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(so that
(2.5) Poo) =P(@)+6%, [6]<1)
and noting the formula ([3], 64)
@
p(v
Pla) = 2[ e +——_112
we get integrating by parts
i) — %wﬂ_ 1Pl(z)—
1P(@)] < wlog?x 2log*2 log2_h" {M Qu I'uﬂlogu v

x

8
Writing the last integral as f + [ and using Lemma 1 we obtain
&8

ull* du
!]% —tu? luﬁlog 7y, T < 30 f ulogiu 5 ) logu usht
30 avt 2 1
1/4
<Toge Tiogra g 47 < 45+5 Tog®s~

Hence and by (2.5)

pr)
[Po(w)| < BO+1. 710g!m 2@.
LeEMMA 3.
212
(2.6) 0 < II(z)—n(m) < 1.431—0g—m
for
x> e,

Proof. Writing
By) = Dlogp

<Y

(p—prime number)

we have for y > 2

Hy) <2ylog2 ([2], p. 341).

Further, with 6 = 3

W:
dy) > D logp > (1—8)logy{n(y)—n(y*~*)}
Pd<p<y
> (1—0)logy ‘n(y)—(1—8)y*~%logy ,
80 that
aly) < 210g2 ey

—4 Iog'q
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Lo 1
Butb l%%'l decreases for y > o , whence for y > ¢*

n(y)gl_(?ilo_gg_{_ $10* ) 1.42——?/———

logy \1—9¢ & L10. 108 logy

Consequently og alog )
og 2/lo)

0 < IT(a) — (@) = bee(a) + Z: (i
&
o2 log® iz

el 1/8
<1g 1.4 -|—31 " <1431gm

LeMmma 4. Write

oy = Za=la ) WO E,

~ #Hlogar’ w
F(u) =f(e¥), Glu) =g(e¥) .
On the conjecture (C)
(2.7) [P (u)— G ()| <

for
100 < w < §logX.

Proof. Using (2.4) and (2.6) we have
Fa)—gl@)| < ——+1 43<15.

Substituting « = e* we obtain (2.7).
LeMMA 5. Suppose

a>ee,
Writing
- sin(up)(y_ 7
8ul) = 202 : (1 a)
y<a
we have
{2.8) 8 <—27—;) = % log a-—%— .

Proof. By the definition of S.(u)

() =2 f @iw“i@(bg) N (o)

=2 f‘N { sin (uw) — (1—§)ueos(uw)}dw.

icm®
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Hence

3
w\ N(w) 1 ™\ ®  (rw\ =z =w )
Sa(za)—{mf 2 {w“(za) ﬂ‘os(z—a)""?ﬁ'EC‘os(z—a)}de“

'?N(w)l. 7w o\zw (1w .
+22‘[ ——5—{5sln(§a)~ (1”—5)—2'&‘“08 (QE)}M =I,+1.

—a
8

%2a 2a
2 2
e 5
7w 1 T 1 x 1
Il>zyf N(m)-g-é--ﬁdm >272f2—ﬁwlog2nedw 00 loga—0.24
1 ”
. Similarly
"N@)(¥31 =1 ‘Ne) (V3 =
I> f {_--——-.—} 2f X
222 | =g o a5/ J @ \2 12 dr
2q 3
6 {N(a;) 3 985 1
5) 2“5 ) T% 50
3 3
3 262 3 1

107r1()§,r3(2m3)2 08 5= 500 > (0.07)}log a—0.26

and (2.8) follows.
3. We turn to the proof of

(0) = (2.1).
Put

e=¢8, =26, N=DN(a)=
Further, let, for

N(e™®) (< e®).

o loglog X
»=0,1,2,. [3Nlogq] 1,

w, be the number satisfying

logX
(3.1) (@ <) I < o, < gErIN ( Oq%v )
such that
Yy, 1
- _— " r <<
(3.2) ‘ o < 7 (mod1) for 0<y<a

(the existence of w, follows by Dirichlet’s theorem).
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Putting now
. * T
(3:3) o} = o, + 5
we get by (3.2) and (1.8)
4n 1
s~ 8] < D) 2< ,
0<y<a
whence and by (2.8)
(3.4) S{w}) > }loga—4.
Substitute & = ¢# in the formula
1
wlor—o == /%L - 1og1-3),
e
multiply by
& R (u— wl)

where
(4) = (Bmy’z) K(y) = aE (ay) ,

and integrate with respect to u in [} o}, § w}] = [hy, hy]. This gives

(3.8) f Ko (u— o) Gu)du
h

:~Z f Kofu— of) eletmuiy + f Koo
[4

where

Ll g
r(u) =62 (Elogl—_lgzz—u—%(())).

Owing to (3.1) and (3.3)

1
r(u)| < 2¢ 5
which together with (3 B) gives, as

fK Yy < ny)dxy—zn,

ahy s

(3.6) flx(y)a(wn g) ay

—aky

6(9-—-1[2)%, 0)"1/2
= K(ye o dy+ 6, 47:e4”
—ah;

(16:) < 1)

icm®
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Now, using the notation of (1.11),

m* » .
e [ s vy < f i |REE B g,

iz iy —(m.',‘+wlu)

|8, £

which yields by (1.11)
(3.7) o < 2%

Writing further p—% = f—%4+4y =b+iy, we get by (C) and (1.10)
for 1< o< X302

abtir gt 1
- <( Zy)max {ly (a*—=1)| + B}
pi<xs e A
< 0.05 {X3(et®* —1) +1} < 0.15 .
Consequently
v T ele—1/2) (@) +ula) (¥ +yla) |
— @, a) iy(o, +yla
fK(y){Ze —Ze - }y] 0.182 -7 < 0.96
ity <X e pexs W |

3%
(here » = ev}tvla < e2 * < X32),
Hence and by (3.6), (3.7)
ahy

38 [ E@6(of+yja)dy

—ahy

. % ahy
eiroy
== D8 [ Rwereay+0970, (o<1

pi<x® —ahy
Finally )
—ahy +oo
v givey \ 1
|8, ‘“‘;2 e (f + f)K( o*v"f“dyt<4 > ”K(y)ew’“dy
yl<Xxs —o0 ahy <X" ahy
7
Y Y
0<y<eo ay<X®

whence and by the inequality (see [8], 57)

| [ ®oreay| <
ahy


GUEST


116 8. Knapowski

further by (1.8), (1.9)

2 1,64 1 32 loga 1
8 < s B D G< et e > g
’ <y<ay ? a<y<X3

Hence and by (3.8)

ahy 1 gt +
[ K@i yaay =— D T [ Ewermay+6, (o) <1

. —aly ly| <X —00

which yields, in view of

1 v 1—w| fo —I1<w<1,
5?:_0[ Ky erdy = { 0 for |w|>1,
" 6
89) = | Ko (ot Yay = —sion+52
—ahy
Since owing to (3.1)
108 < o < o % 3ot < jlogX
for
w%aw, % = ahl) ’
we get from (3.9) using (2.7) and (3. )

L f K(y) B (o) +yja)dy < ——%10ga+3+-2—1;r< 0.

ks
—aly
From this it follows that there exists some o,
qﬂvN < ' < qﬂ(v-l-i)N’
such that F'(w') < 0.
Similarly, writing

o i
o =o—gg

(8.5), using further the inequality

K
w5 <

we prove that there exists an o’/

for ey in

1 1
~§10ga+§ ’

quN< '’ < qa(v+1)N

such that F'(w'') > 0. Turning now to the function =(w)—lie we find
that in each interval

XP(QMN) << b‘Xp(qﬂ("H)N) s

icm
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where

y=0,1,2, [IoglogX] 1,

3Nlogg

there is at least one change of sign of m(z)—Lliz. Hence

loglog X
Y ) > gy Togg
and (2.1) follows.
4. LEMMA 6. Suppose that there ewists a {-zero p* = B*4-iy* such that
1 16
4.1 e 0<y*<e loglog X.
(4.1) B 2 VioglogX.’ y* < exp Vloglog X, ,
where
X, > expexpexpexpexp34.
Then
max (m(z)—liz) > X% exp (—~ M__;;L) ,
(4.2) 2<a<X Vieglog X,
. - * 1610g.X
min (m(z)—liz) < — X5 exp [— ——=2—1) .
2<z<xx( (@) ) ' p( ]/loglogXl)

This lemma is a corollary of the quoted result of [6], in fact for its
proof it would suffice to follow [5] numerically. In the Appendix to
this paper I have collected a number of simple numerical results, together
with sketchy proofs, which would facilitate one to settle the matter. It
may be noted that in most cases the numerical estimations, to be per-
formed in the course of proof of Lemma 6, are quite trivial owing to the
enormous size of X;.

Now we assume the negation of (0):

(NQ) There exists a (-zero

06 = Bo+ 1o,
such that
1 S 14
27 3(loglog T)¥logloglog T’

(4.3)  Bo— 0 < yy < (loglog T)¥7 .

Passing to the proof of
(NQ)=(1.5)

X
ol

U (< 1),

we write

and apply Lemma 6 with
X, =X;(m) =
where

m=20,1,2, .., [loglog X]
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(4.1) is clearly satistied in virtue of (4.3), whence and from (4.2)

max {m(®x)—liz} >0, min {w(e)—liw} <0,
Xr<a<X, Xib<agX,

ie. m(w)—liz changes at least once gign in (X3 X,] and (1.8) follows.

Appendix
Al Iet o= B+iy,» >0 be a [-zero. Then
' log~y
p>- 367
To prove this we follow [9] (pp. 42-44). Quite simply

[ 1e(o-it)] < elogt-+18,

(A1) | [£/(o-+ i) < elog?t-+201ogt
for
-t cog2, i1z (>6).
logt
Further, for
1~m~%<a<2, > e,
we obtain using (A.1.1)
: o (o—1yk
(A.l.Z) IZ(U“’F'H” > 310g1"‘t ’

|61 4it)—C (o +it)] < 6(0—1)log .

Hence (writing o =1+ ?F%@ in (A.1.2))

[t +at)| >
so that, again by (A.1.2),

_ 1
6.365T0g7t ’

log™1
364

Noting that 1—f+4y is also a {-zero we get therefrom

ClE(o+it) >0  for 1—

Lo<l, t=6.

log—®
p>2% 7 QED.

36¢
A2
i 2
(A.2.1) ‘L‘(—ngt) < (‘”1';2) , —co<t< +oo,

(A.2.2) \%(-—g—{—ﬁ)‘<32{8-|—310g(|t|+1)}, —co<t< foo.
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{A.2.1) follows by the functional equation of {(s), (A.2.2) by the Borel-
Carathéodory theorem ([3], p. 50) and the estimate

g((:)) < e8+810g(lto|+1)
[}
for .
[s—8o| <$, So=—3+0y, —oo<tHh< too.
A3.
6 1

(A.8.1) [£(s)] < g for 8| < i’

Isf 5 1
(A.8.2) lz(s) <3 for s8] < i

(A.3.1) follows again by the functional equation. 1%(8)’ might be estimated
gimilarly as in A.2 but it is simpler to use the formula ([3], p. 58).

¢ .1 1rp 11 N
E(S)—b+‘s‘_—1—§f(§8+l)+2(s—:é+'é), b = 0.549 ...
e
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Added in proof, 9. 10.1961. Using the inequality sint> T%t, 0t 1%, lemma 5

can be proved simpler and even in a stronger form. This would algo improve (2.8)
and consequently (1.5), (1.6).
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