
ON SIGN-CHANGES IN THE REMAINDER-TERM IN THE

PRIME-NUMBER FORMULA

S. KNAPOWSKI

1. Let TT(X) stand, as usual, for the number of primes which do not
exceed x. The relation

/ \ [x du . .
TT(x)r**>\ = as #->oo (1.1)

J2logw
is known as the prime-number theorem. Equivalent to it, in a well-
established sense, is the relation

ip(x)~x as x->oo, (1-2)

where lffix)= 2 A(w)= 2

running through prime powers. (1.1) and (1.2) may be put as follows 5

, (1.3)
with

and tf,(x) = x+A(x) (1.4)

with A(a) = o(a;).

The orders of magnitude of the functions J^{x), A (a;) as aj->oo are
closely connected with the distribution of the complex zeros of the zeta-
function. In fact, on the one hand we have the relations

tf (x) = 0{xe+e), A(x) = O{x6+e), (1.5)

6 being the upper bound of the real parts of zeta-zeros and e > 0 arbitrary,
and on the other hand

A{x) = Q±{x°-e) (1.6)

if # > £ . In addition Littlewood proved in 1914 that

A(a0 = O±(s*logloglogs). (1.7)

The latter inequalities complete (1.6) in case 9 = 1, i.e. in case the
Riemann hypothesis is true. So, in view of (1.6), it was permissible to
assume the Riemann hypothesis in the course of proving (1.7).
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There is one serious drawback with the inequalities (1.6), (1.7):
they are, so to speak, " pure existence results " and provide no information
about the ^-sequences in question. This failure becomes evident when
studying the following problem: Riemann conjectured the difference
TT(X)—\ix to be negative for all x ^ 2. It is in fact so for all values of
x ^ 107 but the conjecture as a whole obviously breaks down in view of
(1.3), (1.7). However, and here was the problem, it was very difficult
to find a numerical bound below which the inequality TT{X) >\\X held for
some value of x ^ 2. This question was answered only a few years ago
by Skewes [2], who determined such a bound as expexpexpexp (7-705).
Skewes' argument, briefly, runs as follows:

Part I. Suppose that every zeta-zero p = fi-\-iy, for which

|y| <XX* [Xx = expexpexp (7-703)],

is such that

In this case, the Riemann hypothesis being "almost" true in the range
\t\ <-Xi3, it was natural to follow Littlewood's way of proving (1.7).
This, together with a new method due to Ingham and to Skewes himself,
led to the inequality

TT(X) > li# for some 2 ̂ x < Xv

Part II. Suppose that a zero pQ = P0-\-iy0 exists satisfying

For this case Skewes has developed another method, sketched by Little-
wood for the simpler problem of finding an X = X{h) (h> 0 arbitrary)

max ((p{x)~x) >h.X*

which enabled him to arrive at a numerical X% ( = exp exp exp exp (7 -705) J
SUCh that / w r r o ^- ^ v

77- (x) >hx for some 2 ^ x < X2.
Skewes in fact worked with the function

this being easier to handle than TT{X). The whole procedure of Part II is
substantially nothing but the seeking of a lower bound for the difference

II(a;)—lia;

as x ranges over a certain (numerical) interval. This particular question
and eo ipso all Part II, would obviously be settled if we succeeded in
establishing the following general result:
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Let />o = A)+*Vo be an arbitrary zero of £(s). Then for arbitrary
> 0 we have

max {n(x)-\ix} > T^~e for T > c{Po> e), (1.9)
2r

the latter function being explicit.
For (1.8) together with (1.9) would give the inequality

max {U{x)-\ix}>T1i+v,

valid with certain (sufficiently large) Tx and some t] > 0, and a quick
switch to the function TT(X) would provide the desired numerical X2.
In view of this, and apart from anything else, it is of importance to
estimate explicitly the expressions max {FT (a;)—lia;} [from below as in

(1.9)] and min {U(x)—\ix} (similarly from above). Such one-sided

estimations, and analogous ones for the remainder-term A (a) in (1.4),
will be the subject of the present paper.

The case of an explicit estimation of |A(#)| (from below) has been
settled by P. Turan [4] (see also [5]). The result, established by means
of his new method in Diophantine Approximation, reads as follows.

Let p0 = jS0+*y0, PQ^^ be an arbitrary 1,-zero. Then we have for

T > max (cv exp exp (60 log21 p01)) t

K) (1.10)

(cx being explicitly calculable).

What is essential and underlies (1.10) is the following theorem (a)
particular case of Turan's second main theorem; see [5], p. 52).

Let z1} z2, ..., zM be complex numbers such that

then, if m is positive and N ^ M, we have

max Z 1 "+Z 2
> '4 - - - -+ Z M 1 ' ^ (7c72- OAT i ™ ) ' (1-11)

where v runs through integers.

This theorem enables one to arrive at the estimate (1.10). In order
to get estimates of the type (1.9) we must start from a one-sided analogue
of (1.11). Here is the one which will enable us to carry out the taskj :

f Throughout this paper clt ca, ... stand for positive numerical constants.
X I quote this one-sided theorem thanks to Professor P. Turan's kindness and namely

from his letter dated 29 November, 1959. The theorem is due to appear in Ada Mathe-
matica Acad. Sclent. Hungaricae.
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TURAN'S ONE-SIDED THEOREM. Let zv z2, ..., zn be complex numbers
such that I ^ . ^ ^ | > l .

if for a K with 0 < K ̂  n/2 we have

K^l&rgZfl <TT ( j = 1, 2, ..., n), (1-12)

and if m is a positive integer, then we have

max ?R S g / > (Q1/
 X , \ (1.13)

j=i ' \81(m+w)/

n
and min 3t S z/ < -(„.,_* , . ) (1.14)

where v runs through integers.

Applying this to our question we shall prove the following

THEOREM. Let pQ — ^-\-iyQ, Po^h Yo>® oe an ^'oitrary £-zero.
Then for

T > max (c2, exp exp (log2 y0)) (1-15)

we have the inequalities

m-ii > TH exp (-15 V ' gmax m-ii > TH exp (-15 V ( 1 ' g g T ) ) . d

also

max {H(O-HO > Th e x p ( _ l 5 _ 7 ^ _ ) , (1.18)

m {n(0-liO< -I*exp ( - 1 5 v f f g r ) ) • (1 • 19)

Remark. Note that the inequality

Th exp f-15

(under the assumptions of the theorem) is an obvious consequence of
(1.19).

It does not seem unlikely that one might improve the Skewes constant
expexpexpexp (7-705) by working along the lines used in this paper.
It would probably only require a careful choice of the parameters which
occur in the proof.
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Another point where the estimates (1.16)-(1.19) prove useful is the
following: let W(n), V{n) stand, respectively, for the number of changes
of sign in the sequences

7r(2)-li2, 7r(3)-li3, ..., ff(n)-li».

It has been proved by Ingham [1] that

if the following is true:

there exists a 1,-zero p0 = ao+ito such that £(s) ^ Oin the half-plane a > <r0.

Estimates (1.16) and (1.17) give for all sufficiently large T

a n d

which means that there is at least one sign-change of I/J (n)—n between
T* and T. Hence without any conjecture

Of course we can state the same for sign-changes of the difference

Tl(x)—lix.

To the related question concerning TT(X)—\ix I shall return in another
paper, f

2. Before passing on to the proof of the theorem we give the following

LEMMA. Let T > c 3 , p = fi-\-iy run through non-trivial zeros of £(s).
Then there exists an ao = ao(T), 10 ^ a0 ^ 12, such that writing

xWQ oco (log T)/(loglog T)+ (log T)4 '5 '

we have

arg ( 2 * 2 )

for all p =

t Added in proof: I have proved in the meantime
V(n) > e~2B log log log log n,

for n > exp exp exp exp exp 25.
This result will be published in Ada Arithmetica.
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Proof. On letting a0 range in [10, 12], the numbers (2.1) will certainly
fill the interval

T_ /log logT log log T\
\ 12 ' 10-1 / '

We are seeking now for the measure of those xel for which the inequality

tan (xy)- - |- 1 (2.3)

holds for a fixed p = fi+iy and some e > 0.
The set in question will be denoted by E {x: (2.3) with a p =

xel

For a fixed p = fi+iy and integer k, let xk(p) be the number from / satis-
fying the following conditions, if such a number exists:

2.

The number of k'a for which xk(p) exists is obviously

<c6|y|loglog2\

We have then (always with one fixed p =

x: tan (zy)-tan(xk(p) • y) | < 4

whence
m

consequently

m E {x: (2.3) with a p = f}-\-iy}^. - | . c5 log log T.
xel y

Finally, on choosing a sufficiently small numerical e > 0, we obtain

: tan (xv)—Xrm E
xel

-4- for all p = fi+iy\

- S ^ c 5 loglog T > ml- > 0.

Hence there exists a number (2.1) such that the inequality

Ca

holds for all p = fl-\-iy.

(2.4)
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We shall now derive (2.2) from (2.4). First of all we have

_ ft sin (yxo)—y cos (yx0)

Let us distinguish two cases:

(a) | cos (y#0) | ^ c7 y~2 with a certain (sufficiently small) c7.

Then we get

j8|sin(a;oy)|-c7/|y|

As is well known, we have (see e.g. [3], p. 53)

whence
• ( .

_ C 8

log I y I '

y2log|y|-

This clearly gives (2.2).

(b) | cos (yx0) | > c7 y~2.

Here we have by (2.4)

whence

y6log|yl

and (2.2) follows.

3. Before anything else we shall investigate the sum

\ v ) = s (eP
li

 o)*°y
V p/pn /

(3.1)

with x0 from the lemma, p = ^3+iy being £-zeros, p0 as formulated in the
theorem and v being an integer.

The number n of terms in (3.1) is, as is well known,

We wish to estimate S(T, v) by means of Turan's one-sided theorem.
Choose

Lloglog^.

where a0 is as in the. lemma. By (2.2) we may put

(log T)» (log log T)'

We obtain then from (1.14):
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there exists an integer v1 such that

f < l o s T > w <3-2>
and ®8(T, "i) < -exp (-c16 l ogfoj r) • (3-3)

Similarly we have from (1.13):

there exists an integer v2 such that

SS
 (3-4)

and %S(T, v,) > exp ( - ^ J ^ L ) . (3.5)

4. Proof of the theorem. We start from the integral

On the one hand we obtain by standard methods

and on the other by Cauchy's theorem of residues

The latter integral is 0(1). Furthermore we have

Putting all together we obtain

( ^ ) ( ( i ^ | f ) ) (4.1)

Further we have

|y|>2 login JP ^ ^ y>21og iT^ ^ ^ ' \og& T
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Hence, and from (4.1), we get

^ ) . (4.2)
i)]- Po

Taking real parts in (4.2),

2u ^7\.(7l) — 1 \ -. —r; =— 1 1— Uvo (_/ , v-i j~\~ \J\JL ). ( 4 . of
n^ePo v i V 1 / • IP 01

Similarly

)• (4.4)

Let us notice that (2.1) and (3.2) give

T e x p ( - • ^ log4'5 T(loglog T)) < ex<?i < T,

whence and by (1.15), (3.3) the right-hand side of (4.3) is

^ ^exp ( - T i u l o g
4 / 5y ( i og iogy ) ) , _ c i o g y x

" (2expV(loglogT))13(logr»/( loglogr) ^ "loglogT/"1"

> T^exp ( - 1 4 / / 1
1 ° g

i
r
 m\ . (4.5)

On the other hand the left-hand side of (4.3) is

< max {0(0-

/ log T< max {0(0- [t]}. exp ̂ 7 ^ ^ log log log T

This and (4.5) gives (1.16).

(1.17) follows in a similar way. The left-hand side of (4.4) is

Jta «.«-[<])}.exp ( c ^ j ^ p , log log logy),
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and its right-hand side, owing to (3.4), (3 .5), is

V (log log

The proof of (1.18) and (1.19) is now a matter of a few lines. We
put (4.3) in the form

--L)
|

and have further

['""{m)- 2 '

Noting that the derivative

is positive for exo < t < ê o "i, we obtain

(rrm v 1 I ^ if i Jog ^"Me^ W
II < - S ^ \ A di—logt-^-.—v .. . ;

l Z^n^Ogn) J e*0 \ to (̂ — 1)!

max

whence (1.18). And (1.19) gives no more trouble.
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