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Quadratic Residues and the Distribution 
of Primes 

By Daniel Shanks 

1. Introduction. Chebyshev stated, [1], that there were "many more" primes 
of the form 4m - 1 than of the form 4m + 1 and he indicated, [2], at least three 
senses in which this assertion was to be understood. If the numbers of primes 
in these two classes which are ? n are designated as ir_(n) and lr+(n) respectively, 
and if 

(1) A(n) = 7r(n) -+(n), 

and 

(2) t(n)= 
A(n) 

Vn/1og n 
then Chebyshev stated that for a certain subsequence, n1 j of the integers, 

(3) Limt(ni) a +1. 
i-oo0 

Since i/n/log n -* o, r_(n) could thus be made to exceed lr+(n) by any amount 
by an appropriate choice of n. 

This theorem (which was one of the above-mentioned three senses) was proven 
by Phragm6n, [3], and later by Landau, [4], [5]. The other two "senses" have never 
been proven, [5, p. 647]. Since the theorem, (3), is entirely noncommittal as to 
the behaviour of A(n), or of t(n), for values of n other than those of the subse- 
quence ni, it is however not a very convincing argument in favor of Chebyshev's 
"many more" primes assertion. Littlewood, in fact, showed, [6], that there is a 
constant K such that for two other sequences ni and nk we could have 

(4) t(ni) > K log log log nj 

and 

(5) t(nk) < -K log log log nk . 

Since log log log n -X00 (with great dignity) these inequalities imply that the 
right side of (3) may be changed from + 1 to any real number, positive or negative, 
for some sequence, ni . Because of this Cram6r wrote, [7]: 

"Chebyshev's general assertion-'there are many more primes of the form 
4n + 3 than of the form 4n + 1 '-can therefore be true only in a rather limited 
region. " 
The purpose of this paper, [8], is to determine the sense in which Chebyshev's 

general assertion is (nonetheless) probably true, and to identify the nature of 
the cause which tends to diminish the class of 4n + 1 primes relative to the 4n - 1 
primes. The problem is generalized to primes, and also to composites, in any arith- 
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metic progression. Finally, there are some comments concerning the Littlewood 
phenomena, 7r(n) > Li(n). 

2. The Function A(n). Tables of r_(n) and of ir+(n), [9], [10], [11], [12], pub- 
lished prior to the short note of John Leech, [13], were not of sufficient completeness 
(or, in one case, of sufficient accuracy) to correctly identify Cram6r's "rather 
limited region." Leech computed (on EDSAC) A(n) for n ? 3,000,000 and de- 
termined that 26,861 was the smallest* n for which ir+(n) > 7rr(n): 

(6) A(26,861) = -1. 

The author, uiiaware of Leech's note, carried out a similar computatioin (on an 
IBM 704). The following description of A(n) in this range, 1 to 3.106, agrees 
(where it overlaps) with the shorter account of Leech. In Table 1 we divide this 
range into six regions and in each region give the maximum and minimum values 
of A(n), the number of intervals during which A(n) remains zero, positive, or 
negative, and the total number of n's for which A(n) is zero, positive, or negative. 
The fiinal figures show that A(n) > 0 for 99.84 % of the n ? 3. 106. Table 2 identifies 
some extrema (and some zeros) of A(n). 

This detailed description makes it highly plausible, that the predominantly 
positive character of A(n) in this range of n is not merely a passing fancy of the 
integers (as is almost implied by Cram6r's remark) but a permanent phenomenon 

TABLE 1 
Description of A (n) for 1 ? n < 3,000,000 

Regions of n Max Min 0 In- + Int.-Int. O n's + n's n's 

tervals +m.-m.o ~ +~ 
1- 462 +6 0 5 4 0 10 452 0 

463 - 26,832 +31 +1 0 1 0 0 26,370 0 
26,833 - 26,926 +1 - 1 6 4 1 60 32 2 
26,927 - 616,768 +105 +1 0 1 0 0 589,842 0 

616,769 - 633,882 +12 - 8 101 48 52 1,282 12,428 3,404 
633,883 - 3,000 000 + +256 +1 0 1 0 0 2,366,118 0 

1,352 2,995,242 3,406 
00.05% 99.84% 00.11% 

TABLE 2 
Some Special Values 

A(227) = +6 
A(461) = A(462) = 0 

A(17,971) = +31 
A(26,861) = A(26,862) = -1 

A(359,327) = +105 
A(623,681) = -8 

A(627,859) = = A(627,900) = 0 
A(2,951,071) = +256 

* This first axis crossing of A(n) was discovered independently by J. W. Wrench, Jr. 
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for which a sufficient number-theoretic cause should be assigned and of which a 
more precise formulation is desirable. 

3. The Function r(n). We therefore return to t(n) and seek a better insight into 
this function. We do not compute t(n) itself, but instead, the somewhat simpler: 

(7) r(n) = A(n) 08/X(n) 

where lr(n) is the total number of primes <n. From the prime number theorem, 
7r(n) n/log n, we have 

(8) r(n) - t(n). 

For example, for n = 2,000,000 we have 

7r4(n) = 74,516; lr+(n) = 74,416; lr(n) = 148,933; 

A (n) = 100; Tr(n) = 0.9496; and t(n) = 1.0259. 

The function r(1000 k) was computed for the 2000 values k = 1, 2, * , 2000. 
The minimum, the mean, and the maximum of these 2000 values are 

r(629,000) = -0.0464, 
2000 

(9) 1 E2 r(1000k) = 1.0613, 2000 1 

r(127,000) = 2.0961, 

respectively. Only slightly greater extremes would have been obtained had we 
computed r(n) for all the 2 106 n in this range. The distribution of these 2000 
values of r between the extremes was determined by counting the k's for which 

(10) m < 
m 

(1000k) < m + 1 (m =-1, 0, 1, 33). (10> ~~~~~16 = 
1 

These counts, v(m), are tabulated in Table 3 and plotted in a bar graph in Fig. 1. 
The following comments are now in order: 
a.) The distribution is roughly normal with a mean of (nearly) + 1. 
b.) The rare cases of t(n) < 0 (i.e., r(n) < 0) are now to be thought of as no 

more unusual than the equally rare other extreme: t(n) > 2ir(n)/N/n (i.e., 
r(n) > 2). 

c.) The' implication of Littlewood's inequalities, (4) and (5), is that the distri- 
bution function has tails of infinite extent. Of course, occurrences of r far out in a 
tail will be very rare. 

TABLE 3 

m - 1 0 1 2 3 4 5 6 7 8 9 10 
v(m) 4 7 9 7 10 4 3 14 11 48 55 80 

m 11 12 13 14 15 16 17 18 19 20 121 22 
v(m) 76 114 139 156 139 151 152 136 129 109 107 77 

m 23 24 25 26 27 28 29 30 31 32 33 
v(m) 52 51 55 29 21 19 17 12 5 0 2 
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- 8 0 8 16 24 32 40 250 - .---- _ v (m) is the number of k's, such 
that I < k < 2000 and 

m ?i(1000 k) < m-I-I 
16 16 _ _ _ _ _ _ _ _ _ _ _ _ _ 

200 

150 . - - 

100 

50 

. 
-.. . .......... .............. .. ..... :... ..... . .. 

-F0t5 0 0.5 1.0 1.5 2.0 2.5 

FIG. 1-The distribution of 2000 values of T(l1OOO k) 

d.) Chebyshev's function Vn/log n (or its equivalent r(n)/x/H) is seen to 
be an appropriate normalizing factor it reduces the function A(n) to a function of 
n with relatively small variation. For example, throughout most of the second 
million, (1,015,000 to 2,000,000), r(1000k) has the following very modest be- 
haviour: 

(11) T(1,811,000) = 0.426 ? r(1000k) ? 1.610 = T(1,521,000). 

e.) The function 
k=50s 

TS = 50s Z T(1000k) (s = 1,2,) ,40) 
5Sk=1 

provides a running history of the mean value of r, and is found to change very 
little: 

(12) T5 = 1.0222 ? TS _ 1.1799 = r3 (s = 1, 2, ... ,40). 

4. A Conjecture. The above discussion suggests that the proper formulation 
of Chebyshev's 'many more" primes assertion is the following 

CONJECTURE. The mean value of r(n), 

1 N 

N-21 E (n) 
has a limit as N -> o? and this limit equals + 1; 

1 N 
(13) Lim N1 EN() + 

N--> 0 N - 1 2rn= 1 

The conjectured limit, +1, may seem a little rash in view of the limited data, 
(12). However, there is other evidence. The remark made after (5) may suggest 
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that the + 1 right side of (3) is of no significance since it may be replaced by any 
real number. Nonetheless, from Landau's proof, [5], of (3) it is readily seen that 
+1 has a very special role. For every a the Dirichlet series 

(14) Fa(S) = , A(n) - a /logn 
n=2 n8+1 

defines a function which is regular in the half plane iR(s) > 1 and for the real 
values 2 < S < 1, but is singular for s = 4. However, only for a = 1, that is, only 
for Fi(s), does the function have a limit as s > 2+. Using this fact, and r(n) 
t(n), what is to be proved is that the mean value of the an in 

(14a) Fi(s) = E + an 
n=2n48+1 log n 

has a limit as n -> oo which is equal to zero. 
The conjecture has not been proved, either as its stands, or in one of the two 

following weaker forms: 

CONJECTURE. If no zero of 

L(s) = 1- k +1-1 +19 . 
3s 58 7s9 9-s 

has a real part > 2, then (13) is true. 

CONJECTURE. If 
N 

Lim 1 Er(n) 
N-->,o N - 1 2 

exists, it equals +1. 
However, even the original conjecture seems sufficiently likely to be true to 

merit recording. The closest thing to it, in the literature known to the author, 
is Theorem 2.351 of Hardy and Littlewood, [6, p. 151]. This, together with their 
Theorem 2.34 and a third result due to Landau, [7], may be combined and entirely 
rewritten to read: 

THEOREM. If no zero of L(s) has a real part > 2, then there is a positive K 
such that 

i N 
__T 

-NZEA(n) >K KoN 

for all sufficiently large N, and conversely. 
From this theorem, Abel's lemma on partial summation, [141, and (8), we 

can easily prove the following 
COROLLARY. If no zero of L(s) has a real part >2, then there is a positive 

K such that 
1 N 

E r(n) > K 

for all sufficiently large N. 
We will present further evidence for the conjecture, in section 9 below, after 

we have determined the number-theoretic cause of the 4m + 1 prime deficiency. 
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5. Localization of the Deficiency. If the classes 4m + 1 and 4m - 1 are split, 
modulo 8, we have 

4m+1 4m-1 
8m + 1 8m + 5 8m + 3 8m + 7 

and we now inquire whether the deficiency exhibited by the 4m + 1 primes is 
shared equally by the 8m + 1 and the 8m + 5 primes. Landau's generalization of 
(3) for any modulus, [5, p. 704-711], and other simpler considerations given below, 
suggest, on the contrary, that the deficiency is confined entirely to 8m + 1. 

Let lra,b(n) be the number of primes of the form am + b which are ?n. A 
table of 1r8,b(1000k) was computed for b = 1, 3, 5, and 7 and k = 1, 2, ... ,1000. 
Examination of this table shows that while the numbers of primes of the forms 
8m + 3, 8m + 5, and 8m + 7 are continually jockeying for first place, the number 
of 8m + 1 primes is always in last place. Let fb(n) be the fraction of the tabular 
values, with argument <n for which am + b is in first place. (Two-way or three- 
way ties for first place are pro-rated 2 or 3 of a point respectively.) Similarly let 
lb(n) be the fraction of the tabular values for which am + b is in last place. In 
the present case, since 8m + 1 is in last place throughout the entire range of the 
table, we have for every k- 1,2, 2 ,1000: 

(15) fi(lOOOk) = 13(lOOOk) = 15(lOOOk) = 17(1lOOOk) = 0. 

A brief summary of 1r8,b and the four otherfb and lb functions is shown in Table 4. 
No significant deviations from equality, [15], are to be noted among 8m + 3, 
8m + 5, and 8m + 7,- the slightly low f5(1,000,000) is compensated by the 
slightly high f5(750,000). We conclude that the deficiency of the 4m + 1 primes 
resides solely in the 8m + 1 primes. On those rare occasions (regions 3 and 5 of 
Table 1) when 7r+(n) > 7r4(n), we invariably find that 8m + 5 is in first place 
with a sufficient lead over 8m + 3 and 8m + 7 to overcompensate for the leads 
which these latter classes hold over 8m + 1. It is not known whether 8m + 1 
itself can ever take the lead but in view of what is written below about 24m + 1, 
this is probable - for sufficiently large n. 

TABLE 4 
Distribution of the Primes Modulo 8 

7r8, 1 T8, 3 78, 5 78, 7 II f3 f5 f7 

250,000 5473 5525 5523 5522 1.000 0.446 0.322 0.232 
500,000 10334 10418 10397 10388 1.000 0.337 0.344 0.319 
750,000 14998 15087 15078 15074 1.000 0.380 0.382 0.237 

1,000,000 19552 19653 19623 19669 1.000 0.401 0.287 0.312 

6. Distinctions between Modulo 12 and Modulo 10. Alternatively, we could 
have split 4m + 1 and 4m - 1 modulo 12: 

4m+ 1 4m-1 

12m + 1 12m + 5 12m + 7 12m + 11 
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TABLE 5 
Distribution of the Primes Modulo 12 

n T712, 1 7112, 6 7112, 7 7112, 11 LI f6 f7 fii 

252,000 5504 5567 5564 5566 1.000 0.352 0.420 0.228 
504,000 10404 10476 10480 10472 1.000 0.231 0.274 0.495 
756,000 15100 15196 15204 15186 1.000 0.396 0.258 0.346 

1,008,000 19715 19771 19812 19797 1.000 0.338 0.402 0.260 

TABLE 6 
Distribution of the Primes Modulo 10 

W10o, I *10, a 710, 7 710, 9 I f4 f7 h 

250,000 5495 5520 5517 5510 0.492 0.556 0.444 0.508 
500,000 10386 10382 10403 10365 0.555 0.439 0.561 0.445 
750,000 15027 15084 15073 15052 0.533 0.445 0.555 0.467 

1,000,000 19617 19665 19621 19593 0.502 0.582 0.418 0.498 

A table of 7rl2,b(1008k) was computed for b = 1, 5, 7, and 11 and k = 1, 2, - ,1000. 
(An interval of 1008 was chosen, since its divisibility by 12 simplified the computer 
program and eliminated even slight inequalities.) The results are similar: the 
deficiency of 4m + 1 resides solely in 12m + 1, and when A(n) < 0 we now find 
12m + 5 in the lead. Again, 

(16) f =16 = 17 = 11 = O 

throughout the range computed. Again, the three stronger classes are all equally 
strong-see Table 5. 

In contrast now consider the four classes of primes modulo 10, lOm + 1, +3, 
+7, and +9. This time we find 

(17) fi(lOOOk) = 13(lOOOk) = 17(1000k) = f(lOOOk) = 0 

for k = 1, 2, ... , 1000 so that for these arguments neither 1lOn + 1 nor lOm + 9 
is ever in first place.* We find that lOnm i 3 take turns in first place while lOnm i 1 
take turns in last place. From Table 6 we conclude that this time we have two 
strong classes (which are equally strong), lOim i 3, and two weak classes (which 
are equally' weak), lOnm + 1. 

These striking distinctions between modulo 8 and 12 on the one hand and mod- 
ulo 10 on the other are easily explained in terms of the corresponding modulo 
multiplication groups, and this explanation provides us with a simple, number- 
theoretic, sufficient cause. 

7. Group Multiplication and Fluctuations. Consider the multiplication table 
modulo 8 of the four residue classes 1, 3, 5, and 7 

* At some intermediate arguments, e.g., n = 135852, lOm + 1 is tied for first place and simi- 
larly, for n = 969240, lOm + 7 is tied for last place. 
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m 3 5 7 

3 1 7 5 

5 7 1 3 

7 5 3 1 

and assume that in an interval centered around n there are fewer primes of the 
form 8m + 1 than of the other three types. Consider the excess primes of the other 
three classes. Their products with themselves and with each other are composites 
(of order n2) whose residue classes are contained in the lower right 3 x 3 box. Now 
note that these products are distributed into the four residue classes in proportions 
3:2:2:2-there is an extra product congruent to 1. Assume on the contrary an 
excess number of primes of the form 8m + 1. The composites from these primes lie 
in the upper left 1 x 1 box. Again we find an excess of composites congruent to 1. 
Similarly, too few or too many primes congruent to 3, 5, or 7 will also lead to an 
excess number of composites congruent to 1. Briefly, any fluctuation from equality 
in the distribution of the primes into the four residue classes will create an excess number 
of composites and therefore a diminished number of primes congruent to 1 modulo 8. 
This idea, that the phenomenon in question is essentially a fluctuation phenomenon 
(with analogies to the fluctuation phenomena of physics), arose during a discussion 
of this problem between the author and T. S. Walton. The idea is thus partly due 
to him. 

Since the multiplication group modulo 12 is isomorphic to that modulo 8, the 
behaviour found modulo 12 is similar. But for 10 we do not have the "vier" group 
but the cyclic group 

1 3 7 9 

3 9 1 7 

7 1 9 3 

9 7 3 1 

and this time we find that fluctuations in 10m + 3 or 10m + 7 diminish the lOm + 9 
primes while fluctuations in 10m + 1 or 10m + 9 diminish the lOm + 1 primes. 
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8. Quadratic Residues and the Distribution of Primes. In general, it is readily 
seen, those residue classes which occur on the principal diagonal are the ones whose 
numbers of primes are diminished. These are the quadratic residues. We expect then, 
for any modulus, that the prime race will separate (in the mean) into two races- 
that between the non-residues, up front, and that between the residues, in the rear. 
In particular, since +1 is the only quadratic residue of 24, the deficiency of 4m + 1, 
which was found to reside solely in 8m + 1 or 12m + 1, can be further localized 
to their intersection, 24m + 1. 

For most larger moduli, unlike the unusual 24, there will be many quadratic 
residues and the deficiency, V\n/log n, will be shared among all of them. Thus the 
separation between the residues and the non-residues will not be as sharp, and 
extensive interplay is to be expected. 

9. Propagation of the Deficiency and Higher Order Effects. The quadratic 
fluctuation effect just discussed is not merely strong enough to maintain the mean 
deficiency in the 4m + 1 primes, but, as we shall see presently, as n increases it 
becomes too strong and we must examine the compensating cubic and higher order 
effects in order to obtain an accurate picture. We confine ourselves to the modulus 
4, although the generalization offers little difficulty. We have seen, (9), that the 
mean value of r up to n = 2. 106 is nearly one and we wish to show how a mean 
value equal to one can propagate itself to larger values of n. Our computation, 
however, is only approximate, and while the result gives further evidence for the 
truth of (13), it is not a proof of that conjecture. 

Let a be a positive integer and let 7r+(a) (n) be the number of positive integers 
of the form 4m + 1 which are < n and which are the products of a (not necessarily 
distinct) primes. Our previous lr+(n) is now '7r) (n). With a similar definition for 
7r(a)(,) let 

(18) &1 (n) = (a)(n) - r+ (n), 

(19) :(a) (n) = X (a)(n) + a+ (n), 

and 
(20)~~~~~~~~a A () (n) 

(20) (a (n) = -\a) (n) 
2;(a)(n) 

Note the slight difference between T and -r(l)the new denominator, 2 (n) - 

7r (n) - 1, omits the count of the prime 2. 
We wish to compute the mean value of -r (n) and we assume that the mean 

values of r 1)(x) for x = nlIa (a = 2, 3, 4, **-) are all equal to 1. It follows that 
of all the odd primes of order nl/a, a fraction equal to 2 (1 + 71-l/2a) is of the form 
4m - 1 and a fraction equal to 2 (1 - nl/2a) is of the form 4m + 1. The composites 
of order n, which are the products of a primes, have as prime factors primes whose 
(geometric) mean order is nlIa* With reference to the multiplication table (mod 4): 

?1 -1 
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we now find, by induction on a, that among all possible a-fold products of these 
primes, a fraction equal to 1 ( 1 + (-1 )a+1n-') is of the form 4m - 1 and a fraction 
equal to 1 (1 ( )a+ln-12) is of the form 4m + 1. In other words, on the average, 
we will have, for a = 2, 3, 
(21) . (a) (n) )a+l. 

Thus we find a simple and interesting generalization of the Chebyshev phenomenon. 
There will be, in the mean, an excess of 4m - 1 composites of odd degree a, and 
an excess of 4m + 1 composites of even degree. Further, the mean fractional excess 
will be n-2, independent of the degree a. 

Now, for any n, 
0 /(l)(n) + A/(2)(n) + A('3)(n) + ... 

with an error of 0 or 1, and therefore, with the same error, 

(22) A(1) (n) = _A(2) (n) - A3() (n) - 

As long as n is not too large, say 1000, most of the composites are of second degree, 
and we have A (1) (n) A _ A(2) (n). This, essentially, was our picture in sec. 7 above. 
But as n increases, the other even degree composites would tend to increase the 
deficiency while the odd degree composites tend to diminish it. To determine the 
balance we use the known fact, [5, p. 627], that in any arithmetic progression the 
number of integers with a odd is asymptotically equal to those with a even. Specifi- 
cally, for the progression 2m + 1, we have 

(1 + E) 2(') (n) = (;2) (n) 
- 2;(3) (n) + 1()(n)-* 

where e -> 0 as n > s. Therefore from (20), (21), and (22) we have, in the mean, 

A() (n)= (1 + E) :(1) (n)/-n. 

Thus 

(23) r(l)(n) = 1 + E, 

and a mean value of one propagates itself. 
There are two remarks of interest concerning equations (21) and (22). 
1.) The sequences x(n) and XM(n) are defined as follows: 

X (n) = (-1_)a 

where a is the number of prime factors of n, and x(n) = 0, 1, 0, and -1 for num- 
bers of the form 4m, 4m + 1, 4m + 2, and 4m + 3 respectively. Let 

(24) bn = M(n)x(n). 

A generalized Chebyshev assertion now reads: there are "many more" integers 
m for which bm = +1 than for which bm = -1 and the mean excess is of order 
2+Vn. Since it is known, [5, p. 674], that 

00 

f(s) = Z bnn- = (1 -2 2)v(2s)/L(s) , 

it is clear that a function-theoretic formulation of this assertion is concerned with 
f(s) and with the zeros of L(s). 
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2.) Let n be sufficiently large such that the number of primes is small com- 
pared with the number of composites. Then the terms of like sign in the right 
side of (22) could be combined so that the right side would be the difference be- 
tween two nearly equal numbers. We therefore have an analogue of a difficulty 
in numerical analysis-subtractive loss of significance. In fact, the analogy is 
very good, since it is known, [15, p. 3421, that the normal order of the number of 
prime divisors of n is log log n and that the number of composites of degree a is 
given asymptotically by 

I(a) n) - n(log log n)a-l/(a - 1)! log n. 

This means that the numbers of composites of degree a have an approximate Poisson 
distribution around a mean of log log n and that the equation (22) is comparable 
to the following equation, which is numerically sensitive when n is large: 

1 - elog log n 
- log log n - I(log log n)2 + ... 

We should therefore expect disturbances in the balance, (23), and more or less 
random oscillations around this mean. The oscillations should grow as log log n 
increases and may be expected to show strength when the condition (1)<< 

2 (2) 2(3) is met. This should occur for log log n = 2.5+ or log log log n t 1. 
With these remarks we are led to our final topic. 

10. The Littlewood Phenomena. Analogous to Chebyshev's assertion is the 
erroneous inequality: 

(24) 7r(n) < Li(n) 

which was thought to be correct both by Gauss and by Riemann, [7, p. 791, 795]. 
Again we have the Littlewood counterexample 

(25) 7r(n) - Li(n) > K _\/n log log log n. 

And again we obtain, this time from Riemann's prime formula, [7, p. 795], 

(26) Li(n) = 1r(n) + Ir(A/n-) + 

and from 7r(Vn) 2 in/log n, the suggestion to define 

(27) r(n) = Li(n) - r(n) 
\/n/log n 

Or similarly let us define 

(28) p(n) = Li(n) - ir(n) 
7r(n) 

Analogy with (13) now suggests the possibility that 

1 N 

(29) Lim N p(n) = +1 

is the proper formulation of the erroneous (24). 
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If, indeed, the differences Li(n) - lr(n) and 7r_(n) - lr?(n) are usually of 
the same sign and order of magnitude we should find that 

(30) 7*(n) = lr(n) + wr(n) - r+(n) = 2r4(n) + 1 

agrees with Li(n) much better than lr(n) does. This is, in fact, the case as is seen 
in Table 7, [16]. We therefore regard (29) as plausible. It should be investigated. 

A final remark concerning the Littlewood phenomena may be of value. It is 
sometimes said or implied, [17], that (24) is true "im Bereich der Tabellen", where 
the tables in question include such entries as n = 101 and n = 109. But lr(n) - Li(n) 
has not been evaluated for all intermediate values of n (say for 108 < n < 109) 
and consequently, it is not certain that (24) holds there. In the analogous case 
of /(n) discussed above, had we computed A( 10,000k) up to k = 300 we would 
have always found l\ > 0 since all the axis crossings of A(n) up to n = 3 .106 occur 
at intermediate values of n. Further, since the first crossing of lr(n) -Li(n) may, 
like Leech's 26861 above, be of very short duration, it could well be missed unless 
the computinig interval in n were rather small. The author knows of no compelling 

TABLE 7 

n (n) *(n) r(n)/Li(n)r* /Li(n) 

103 168 175 0.9459 0.9853 
2*103 303 311 0.9625 0.9879 
3.103 430 437 0.9712 0.9870 
4.103 550 561 0.9728 0.9923 
5.103 669 679 0.9777 0.9923 
6.103 783 799 0.9782 0.9982 
7.103 900 915 0.9843 1.0007 
8.103 1007 1015 0.9811 0.9889 
9*103 1117 1125 0.9825 0.9895 

104 1229 1239 0.9862 0.9943 
2.104 2262 2273 0.9884 0.9932 
3.104 3245 3267 0.9903 0.9970 
4.104 4203 4235 0.9929 1.0005 
5.104 5133 5167 0.9935 1.0001 
6.104 6057 6077 0.9958 0.9990 
7.104 6935 6971 0.9928 0.9980 
8.104 7837 7867 0.9950 0.9988 
9-104 8713 8729 0.9949 0.9968 

105 9592 9617 0.9961 0.9987 
2.105 17984 18013 0.9971 0.9986 
3. 101 25997 26033 0.9965 0.9979 
4.101 33860 33919 0.9981 0.9999 
5.101 41538 41613 0.9983 1.0001 
6-10s 49098 49151 0.9985 0.9995 
7.101 56543 56589 0.9982 0.9990 
8 10, 63951 64071 0.9986 1.0005 
9.10, 71274 71379 0.9988 1.0002 

106 78498 78645 0.9983 1.0002 
2.106 148933 149033 0.9992 0.9998 
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reason why the first crossing should occur at anywhere near as large an n as Skewes' 
fantastic 10103 4, [18i. 
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