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INTRODUCTION

1. LET TT(X) denote, as usual, the number of primes less than or equal to x
which we suppose always to be not less than 2, and let

e-0\J J \0gU
1 + e'

The difference d(x) = TT(X)—]ix is negative for all values of x up to 107,
and for all the special values of x for which n(x) has been calculated (e.g.
d(x) = —1757 for x = 109). Littlewood (1) proved in 1914, however,
that d(x) changes sign infinitely often, and in particular there exists an X
such that d(x) > 0 for some x < X. This last result is our present subject.
Littlewood's method depends on an 'explicit formula', as does all subse-
quent work, including the present paper.

If 6 is the upper bound of the real parts of the zeros p = jS+iy of the
Riemann zeta-function £(s), the 'Riemann hypothesis' [(RH) for short]
is that 9 = \; if this is false, then -| < 9 < 1. In this latter case it had
long been known that, for each positive e, d(x)/xe~e oscillates, as x tends
to infinity, over a range including ^ 1 . In proving the mere existence of
an X it is therefore permissible to assume (RH), and Littlewood naturally
did this.

Littlewood's theorem is a 'pure existence theorem', and does not pro-
vide, even when (RH) is assumed, an explicit numerical X.

When we face the problem of a numerical X, free of hypotheses, the
argument falls naturally into three stages.

(i) A new method is found which assumes (RH) and provides a numerical
X = Xx. I gave such a method in 1933 (3). In the meantime Ingham (4)
has developed an alternative method (which he applies to the more general
problem of the infinity of changes of sign of d(x)). This, adapted to our more
special case (one change of sign) and with some further modifications, gives
a much better Xx than my original paper did; the argument is given in full
in Part I. One of the advantages of the new method is that we can largely
eliminate the p's beyond a given point; we operate in fact with the 269 p's
with 0 < y < 500, whose position is approximately known.
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(ii) (This is easy.) The whole argument in (i) is based on the explicit
formula for I(JO(X) = ^{ifj(x-\-O)-\-ifj(x—0)} (in the usual notation of the
subject) (2). This is

1

p

In the course of the proof the terms of the series ]T xPjp with \y\^ G = X\
can (roughly) be rejected as negligible, (RH) or not. It is enough, in other
words, to suppose, instead of (RH), only that /3 = \ for those y's satisfying
\y\ < G. This hypothesis can in turn be weakened; fora; < Xx, the \xP+iy\
concerned differ from \xi+iy\ by something negligible, provided the /?'s
concerned satisfy

b = £—•£ < B = Z f nog-2*!.

With minor adjustments, then, the proof in (i) can be made to provide
an Xx [actual value expexpexp(7-703)] subject only to the double modi-
fication of (RH) explained above. This modification, which we will call (H),
is, to repeat,

(H) Every zero p = fl-\-iy for which \y\ < G = XI is such that

(iii) Since (H) leads to an Xv it remains only to show that (NH), the
negation of (H), leads to an X2, i.e. that d(x) > 0 for some x < X2. Now
(NH) asserts the existence of a p = p0 = fio-{-iyo with

0<y0<G = Xl bo = & - ! > B,
where B = *^~3log-2*1;

that is, it provides a more or less given p to the right of a = •£. In par-
ticular, it asserts that 6 > \-\-B, in which case an X2 certainly exists in
virtue of the old theorem about d(x) > xd~e. It is natural to expect further
that the proof of that theorem could use the existence of the special p0 to
provide a numerical X2. But this turns out not to be so; the proof in question
is another 'pure existence' one. Some further idea is called for, and I am
in fact indebted to Professor Littlewood for the sketch of a method for the
simpler problem of finding an X such that, for a given h > 0 and for some
x < X, I(J(X)—X > h^/x.

There is now a last unexpected point. In the past it has always been
possible to work with the function ifj(x) and its simpler explicit formula,
with only a last minute switch, on established lines, to TT{X). But with
(NH) this is no longer possible, and it is necessary to work, in finding X2,
with Yio(x) = ±{Tl(x+0)+Tl(x—0)}, where

^ 1 ^ 1
U(x) = y — = y —Trix1'™), M = [Iogz/log2].

Pn^X TO=1
5388.3.5 -o
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The explicit formula for IT0(a;) is, for x > 1,

In the actual working out of the paper stages (i) and (ii) are telescoped,
and (RH) never appears. In Part I we assume (H) from the first, and
arrive at an X1 = expexpexp(7-703). Part II then assumes (NH) and
arrives at an X2 differing negligiblyf in expression from eXl: a (just) per-
missible X2 is

io1 0

I wish in conclusion to express my humble thanks to Professor Littlewood,
but for whose patient profanity this paper could never have become fit for
publication.

PART I

2. We begin by collecting, in Lemma 1, some results about the zeros p.
The fundamental theorem underlying all its results is as follows (5).

Let N(T) be the number of roots p — j8+iy of the ^-function satisfying
0<j8<l, 0 < y < T. Then

where \R{T)\ < (0-137)logT+(0-443)loglogT+4-350.

We make use also of the known values of ylt y2,..., y29> *na^ is> aU ^n e y' s

satisfying 0 < y ^ 100. We have now

LEMMA 1. For all T > yx = 14-13...,

(i)

11
2TT T

(iii) 2 A < °"0233-
y>0 ^

For \h\ < \Tt

(iv) \N(T+h)-N(T)\ < -L

We suppress throughout the details of purely numerical calculations.

•f X\00 differs negligibly (in its top index) from Xx. For this and similar reasons
some of our approximations can be very crude; only in those bearing on a top index
is refinement called for.
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We obtain (i) from (1) and the formulaf

1 ±+ f

where N*(T) = N(T) — 29. Since Y — < 0-5925, this leads by straight-

forward calculation to

y -=-
where \BX{T)\ < 0-312. This leads at once to (i).

We obtain (ii) similarly, from (1) and the formula!

™2N(x)^ N(T)1 _ f
^~ )

Of the remaining results (hi) is known, and (iv) follows at once from (1).

3. LEMMA 2. Let I/JO{X) be defined, as usual, by

where ifi(x) = ^ A(n). For x > 1, I/JO(X) is known to possess the explicit

formulat

— is defined as the limit of y — as T -> oo. / /
P \ P

2
fi f y

P P \y\<T P

(i) | J B ( X , T ) | < 1 0 0 0 ^ 1 - i ^ + 3 1 o g a ; (» > e, T > 9);

(ii) \R(x, T)\ < (0-0001 )«* (x > exp(104), T > x2);

(iii) < 3a;logx (x > e).

The proof of (i) proceeds by straightforward calculation on the lines of the
proof of (2); (ii) follows from (i); and (iii) follows from (2) and the definitions
ofifjQ(x) and «/»(#), since

2 and \ifio(x)—ip(x)\

t (2), 18, Theorem A. } (2), 77, Theorem 29.
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4. We shall for the present assume the following hypothesis, which we
call (H), about the zeros p = fi-\-iy.

(H) Let Xx = expexpexp(7.-703), G = X\, B = X f ^ o g - 2 ^ . Then for
every zero p such that \y\ < G, j8 satisfies

b = j 3 - i < B.

For reference we shall prefix (H) to those results which depend on the
hypothesis (H).

(H) LEMMA 3. Let *pi{x) be defined, as usual, by
Us

ift^x) = j ijj{u) du = £ (x—n)A(n).

Then, on hypothesis (H),

(ii) l^i^)—£#2| < |^- (e8 < x < Z3

For a; ^ 1 we have the formulaf

, , , , o ^ XP+1 r(0)
;• (3)

From Lemma 1 (ii) and (iii), and assuming (H), we have, for x < Xv

\y\<O '

Substituting in (3) and noting that

£'(0)/£(0) = log27T and |^'(-

we obtain both (i) and (ii).

5. LEMMA 4.

(i) lilt < (l-0004)?i/log?t (u ^ exp(4.103));

(ii) liu < 2^/logw (u ^ 2).

The value of Ii2 is 1-04... . For u > u0 ^ e2, say,

u
logu du\logui

f (2), 73, Theorem 28.
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u

Hence lilt = lii^-f-
J logv

«o

and the result (i) follows by taking u0 = exp(3.103). By taking u0 = e2,
we find that (ii) is valid for u ^ 8, say, and, for 2 ^ u < 8, (ii) is trivial.

6. We define II(x), as usual, by
M ,

II(a;) = V -ir{x^m), M = [Iog»/log2].
m=l

LEMMA 5. For x > exp(4.103), either TT(|) > Ii £ for some £ of 2 ^ ^ ^ a;-,
o r e?5e 0 < n(x)-77(x) < (l-0005)a*/log&.

Supposing the former alternative to be false, we apply Lemma 4 (i) to
the first term on the right-hand side of

M ,

U{x)—ir(x) = br(xl)+ V -TT
m=3

and Lemma 4 (ii) to the remainder. Then
M

U{X)—TT{X) ^ ihx*+2 2 a;1
?/l = 3

< (l-0004)ar*/loga;+(0-0001)a;Vloga;,

and the desired result follows.

7. (H) LEMMA 6. Let P(x) be defined by

P(x) = (II(a;)—lia;) —(0(a;)—*)/loga;.

Then, on hypothesis (H),

\P(x)\ < (0-0005)a:*/loga; (exp(104) < x < Zx).

We have [(2), 64]

r>/ \ f Mu)—U j , 2 .
P(x) = r \ ' du4-- h2,

J ulog2^ log 2
2

and therefore, after integrating by parts,

\PIX)1 (
2

+log2log2

where J = J { W . , - j
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Now
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J |W
2

- J + /.8
2 e8

Now apply Lemma 3. We have, on (H),

321 f
J

Since increases with u for u > e8, it follows that, for

exp(104) < x < Xv

| J | < >£f_j.^L_4ar* < 48+0-0004a;*/loga;.
log 2 log2x

Substituting this inequality in (4) and applying Lemma 3 (ii) to

(0i(a;)—&&2)/a;log2a;,

we obtain the required inequality.

(H) LEMMA 7. Assume hypothesis (H). Then for any given x satisfying
exp(104) < x < Xlt either

(i) 7r(£)-li£>0 forsome£of2^£^xi,
or else

(ii) Vofc)—a; > (l-001)xis implies fn(x)—]ix > 0'.

(i) is the first alternative of Lemma 5, and (ii) follows from the second
one and Lemma 6, since

(ir{x)—hx)logx = {<IJ{X)-IIJO{X)}+{IIJO{X)-X}-

-{0o(a;)-a;-(n(a:)-lia:)loga!}-{(n(a!)-7r(a;))loga;}

> 0+(l-001)a;*—(0-0005)**—(1-0005)** = 0.

8. (H) LEMMA 8. On hypothesis (H),

* p - *

\y\<0

< 0-0234 (exp(104) ^ * < Xx).

For brevity write the series on the left as S(x), and let, as usual,

p—\ = jS—-̂ -My = b-\-iy.

Six) = 2
Then

Applying (H) and Lemma 1 (iii), we have therefore

S(x) < (

< 0-0234.
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9. We now develop a modification of Ingham's argument. Consider the
formula (see (4), 204 (6))

b

x(x)(*/*o(x)-x) dx

a
b b

= ~ 2 I J X{X)XP dX+ J x(^)»log(l-^2)-1-r(0)/a0)} dx, (5)
Pa a

where 1 < a < b < oo, and x(x) is a n y function integrable in the sense of
Lebesgue. Let

so that, for real a,

1 f ia fl~ H ( l a l ^ 1 ) '
2TT J I 0 (|a| > 1).

— 00

Let T = 500 and to be any number satisfying <o > 2.104. In (5) substitute

Then, writing for brevity

F{u) = {ipo(e
u)—eu}e-*u, (7)

we have

r •*-* I r
TK{T(u—OJ)}F(U) du = — y - TiT{T(^—w)}e^-i)u d^ + .ft, (8)

J ^ P J
where, if we define r(u) by

i2 is given by R = f TK{T{u—a>)}r(u) du.
il

Since |co < w < fco and o> > 2.104, we have

|r(it)| < 2e-iw < 0-00001;

hence [in virtue of (6), with a = 0]

\R\ < (0-00001) J TK{T(u-co)} du

= (0-00001) J K(y)dy < (0-00001)2TT. (9)
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Substituting u — oj-\-yjT in (8), we have from (8) and (9)

iTco VTOJ

JiJ K(y)F(oj+ylT)dy=-^- J dy + R, (10)

where \R\ < (0-00002)TT.

For the infinite series on the right-hand side of (10) we shall substitute
the.finite series m

^ f K(y)eW dy,

where G is the number defined in hypothesis (H), § 4. The total error
introduced will be the sum of three errors el3 e2, e3, where ex comes from
discarding those terms for which \y\ ^ G, e2 from replacing {eip-Wr»+viT)yp
by (e^(co+J//21))/iy3 and e3 from extending the limits of integration from

to ±00. We shall deal with these errors in separate lemmas.

10. LEMMA 9. For 2.104 < o> < llog G, the error

dy

satisfies

Since

Then

M = sup

=

Tco,

lyl>

T
1 T T .

ex| < (0-0002)TT.

we have \u) ^ cu+y/27 ^

_ p(p—i)m

/ • ^ -

for ^w ^ m ^

eu. Let

OJ.

Jf 2nM,
-JTw

and this is less than (0-0001 )2TT by Lemma 2 (ii) applied to e~imR(em, G),
since (^co, fa>) is included in the appropriate range.

(H) LEMMA 10. On the hypothesis (H) and for o» subject to

2.104 <o> <§logG,
the error

e2 =

satisfies

dy - 2 i f

|e2| < (0-0468)TT.
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As in Lemma 9, we have \u) ^(x)-\-y\T < |OJ. Suppose here that m is
that value of OJ-\-y\T for which the value of

I
\y\<O

_ _ eiy(oj+ylT)

is greatest. On (H) and for 2.104 ^ o> < flogG, the error e2 satisfies

1

T,., W<G

L e(p-i)(to+ylT) 1 ev

p iy
dy

\y\<O

< (0-0234)2TT

by Lemma 8, since m again lies in the relevant range.

LEMMA 11. For o> > 2.104 and T = 500, the error

2 eW f

satisfies \e3\ < (0-00002)TT.

Since K{y) is an even function of y and the "y's are symmetrically dis-
tributed, we have

f
L

0<y<T T^<O

Now we have the two inequalities!

00

f

oo

r
J

42'co

2T 4

Using the former inequality in

Lemma 1 (i) and (ii),
, , ^ 32 ^ 1 . 64

a n ( i *n e latter in > w e have, from

0<y<T A T<y<G ' TUJ 4TT ° ' w 2n T

Since o> > 2.104 and T = 500 the required result follows.
< 4/t/2 in the range con-•f We have K'(y) — 2 siny/y2—8 sin2 %y/y3 and

cerned.
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11. From Lemmas 9, 10, and 11 we may now replace (10), subject to

the condition 2.10* < a, < flogG, (11)

ITco . oo

by \ K(y)F(a>+ylT) dy = - ^ ^ \ K{y)eW* dy + E, (12)

where \E\ = \R—e1—e2+e3| < (0-0471)TT.

Applying (6) to the series on the right-hand side of (12), we have, still
subject to (11),

=-2 J 2 * ( l
«<y<T Y V

( g ) » . (13)
0<y<T y '

Now let FM = FM(oi) be the upper bound of F{oi-\-y\T) for the range
-\Toi < y < \Tu). Since Z(2/) > 0, (13) gives

_ w / ^ ^ _ I K(y)F(u+ylT)dy

_2 V EB^fl _ Z \ _o.O236. (14)
y

Now by the definition (7) of F we have

FM = upper bound of (tjjo(x)—x)x~i for eiw ^ x Ĉ e8a>. (15)

We are therefore in a position to establish the following lemma.

(H) LEMMA 12. On the hypothesis (H) a sufficient condition that
TT(X)—\ix > 0,

for some x satisfying 2 ^ x < -X^f is that, for some a> subject to the
condition (11),

- 2
0<y<500

When (16) is true we have, by (14)J (and the fact that T = 500),
00

FMJ> 1-001, and a fortiori FM > 1-001 since / < — = 1 . Lemma 12
2TT J

— 00

then follows from Lemma 7.

f We recall that Xx is the number concerned in (H), § 4, namely exp exp exp(7-703).
J Which is valid subject to (11).



ON THE DIFFERENCE TT(X)-MX 59

12. Our problem is now to find a suitable to. It must be chosen so that
the sines in (16) are predominantly negative, and such a choice is made
as follows.

The number N of terms in the series on the left-hand side of (16) is equal
to the number of y's satisfying 0 < y < 500; this is known to be

N = 269. (17)

Let to0 and q be the numbers

ct>0 = 2.104+l, g = 3600. (18)

By Dirichlet's theorem there is a number to' satisfying

COQ ^ CO ^ CUQ Q (*•&)

such that
2TT

(20)

where rn is an integer. Now let

co = a/—ft, (21)

where k = fa. (22)

Then, from (20) and (21),

siny?lo> = — sin(ftyn—<f>n),

where \<f>n\.< iir/q = 0°6'. Now from (17), (18), (19), and (22),

2.104 < OJ < co0q
N = (2.104+l)3600269 = expexp(7-7021...) < flogG.

The condition (11) is therefore satisfied. Hence, by Lemma 12, we shall
have TT(X)—\ix > 0 for some x satisfying

2 < x < Zj

provided that

| rin<*^-*>(^) > 0-5123. (23)

13. The inequality (23) is actually true. The right-hand side is what
determines the top index of Xx and it is here that we try to refine. It will
suffice to sketch the numerical considerations involved.

The angles kyn—<f>n range from 6° to 215°, and the first 213 sines are
positive. In the case of the remaining negative terms, for which

180° < kyn-cf>n < 215°,

the y's satisfy 420 < yn < 500.

Hence, in addition to the fact that l/yn is small, either the absolute value
of the sine or the factor (1—yn/500) is small, and these negative terms prove
to be of little importance. For the rest, sufficient is known about the values
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of the y'sf to enable us to obtain a lower bound to S by straightforward
calculation.

In this the first 29 terms are calculated separately, the remainder are
grouped in intervals (of the values of the y's) of 10. For example, the first
group contains the 4 terms for which 100 < y < 110, and the last group
contains the 7 terms for which 490 < y < 500. We obtain a lower bound
to the contribution of each term, or group of terms, by making use of the
fact that the function p(yn), defined in (23), satisfies (whatever the parti-
cular values of <f>n, <f>n+1) p{yn) < p(yn+1) for yn < 457 (approximately), and
thereafter satisfies p(yn) > p(yn+1). We may replace each of the first 29 y's
by the upper bound to the interval in which it is known to he, and for those
groups for which y ^ 450 we replace each of the y's in the group by the
upper bound of the interval in which it lies. The same replacement applies
for the subgroup 450-457. For the subgroup 457-460 and the remaining
groups for which y > 460, since p(yn) is now increasing, we replace the y's
in each group by the lower bound of the interval concerned. For example,
each of the 4 y's between 100 and 110 is replaced by 110, while each of the
7 y's between 470 and 480 is replaced by 470. <f>n is replaced by -f 6' or —6'
according as yn k < 90° or yn k > 90°.

We find that S > 0-5131 > 0-5123.

TT(X)~\ix is therefore positive for some x satisfying

2 < x < Xx = expexpexp(7-703).

PART II

14. Before we can begin developing the consequences of (NH), the
negation of (H), we need a number of preliminary results about the function

U0(x)—]ix = ^{Il(a;+0)+n(a;—0)}—lia;,
where IT (a;) is defined as in § 6. For x > 1 we have ((2), 81-82)

(24)

the series being boundedly convergent in any finite interval 1 < a ^ x ^ b.
The li function for a complex argument is defined by

\\XP — \iePl0SX, (25)
and, for w .= u-\-vi where v ^ 0,

TLJx)-\ix = - y lizP-f f „ du
 1 log2,

oV ; P J (u*-l)ulogu 8

•tt -t- *

li ew = f — dz.
z

— ao + vi
t (6), (7), (8), (9). In addition I have used some calculations performed by

Dr. Comrie, kindly lent to me by Professor Titchmarsh.
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We define the function L(t) for t > 0 by the series

L(t) = -e-^^lieP1. (26)
p

From (25) and (26) we have, for t > 0,

-Lit) = e-*' y [ - dz = \ efc-w f - ^ -
P -co + i.yt P 0

pT J (pi-i;)2 I
0 J

e~vdv

0

both series being boundedly convergent in any interval of type

0 < a' < t < b'
since the first is. So

-L(t) = J,ux(p,t) + Z U2(p,t), (27)
p P

0

15. LEMMA 13. |L(0| < 4e*' (t > 1).

By Lemma 2 (iii), if T = e( ̂  e,

I n w2(p3«) we have \pt—v\2 ^ \iyt\2 = y2t2,

y>0

since 2 Y~2 < ^'05. The result follows.

16. LEMMA 14. A sufficient condition that TT(X)—hx > 0 for some x
of 2 ̂  x ^ X is that, for some y satisfying 104 ̂  y ^ log-X",

L(y) > 1. (29)

Suppose the condition of the lemma is satisfied for a certain y, and let
x = ev. Then, by Lemma 5, either TT(|)—]i | > 0 for some £ of 2 ^ £ ̂  x-,
or else

U0{X)—TT(X) < II(a:)—7r(a;) < (l-0005)a*/loga; < 2a;*/loga;.

In the first alternative, we have what we want at once, and we have only
to consider the second. Now, from (24) and (26), the integral in (24) being

positive, no(a;)—lia; > x*L(y)—log 2 > a:*—log 2,
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and so, from the second alternative,

•n(x)—]ix > xi—Iog2—2x^llogx > 0,
as desired.

17. Let Xx and G be, as in § 4,

Xx = expexpexp(7-703), G = Zf.
Since we cannot use O's in connexion with numerical bounds, we shall
use #'s (&', #l5 etc.) to denote numbers, possibly complex, satisfying
|#| ^ 1. They will in general not be the same from one occurrence to the
next, but where more than one occurs in the same expression we dis-
tinguish them.

Let y ^ G, and let A be any real number satisfying!

| A | < G « y ) .
Consider J the function F(y, A) defined by

CO

F(y,X) = j[-L(t)]teEdt, (30)
iv

E = E(t,y,X) = -\U-W-y)*ly. (31)
We have the following result.
LEMMA 15. Write b = /?—|, r = p—|—iX = 6+i(y—A). Then, subject

toy^G^\X\ Z (32)

where U(P) = {2ny)h^^4- + ^ \ + &'e-^-. (33)
\ p y y ) y

The proof of this is rather long, and we break it up into two subsidiary
lemmas, A and B, and a short fina] deduction from them. We have among
other things to show that the series (27) for L can be integrated term by
term in (30): this involves a limit-process T -*• oo for fixed y, X. The parts
of Lemmas A, B dealing with this use O's, which are accordingly uniform
in the p (or y), but not in the 'fixed' y, A; the K's similarly are independent
of p, y, but not of y, X.

LEMMA A. For ux{p, t), defined by (28), we have

^ y (34)

(35)
\v

t These conditions hold throughout the rest of the paper. Note that G is so large
that any inequalities like \00yloe~vls < e~yl10 that occur in the run of our argu-
ment will be true when they are 'true for large y\

% The introduction of F(y,X) is the idea given me by Professor J. E. Littlewood.
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LEMMA B. For u2(p, t), defined by (28), we have

\u2teZdt = O\L-r\, (36)
rp \ Y I

7 324# *
tEdt

I " " o-iV /Q7\
o 1 £"e • \61)

y y2 y5

18. In Lemmas A, B we may, by symmetry (since A can take either
sign), suppose without loss of generality that y > 0.

Proof of Lemma A. We have

i

u±teE = -eruftt), f(t) = e^-*-*^-*
P

For « :> T7,

f v^UP dt = -\^f(t)] -- f ^ / '
J plyi \T pj y%
T T

As T -» oo we have, uniformly in « > T, /(<), /'(«) = 0{e~KT"). I t foUows
00

that J uxte
E dt exists, and that it is O(y-2e~KT*); and this is (34).

00 00

Next, f ^ teE dt = - f e^-w-^'" d« = ^ ^ efr+*^. (39)
J P J P

— 00 —00

Again,

iV . iV

uxte* dt = - 1^/(0 - - e-^f'{t) dt = J,+J2, say. (40)
J plr1 J-oo P J v1

We have /(—oo) = 0 and \f&y)\ < e™v-hv < e-*
v, so that

Jx = #y-2e-iJ/.

Also, for — oo < t < ^7/,

Writing w = |£—?/| = ?/—i, and observing that u ^ f y and

we have ^ , |

|J2| J
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So J i + / 2 = 2&y-2e-ly, which, combined with (39) and (40), gives (35) and
completes the proof of Lemma A.

19. Proof of Lemma B. LeU > TandT->oo. We have \pt-v\2 ^ y2t2,
and so, from (28),

t oo t

\ u2 te
E dt < J e~v dv. y~2 J

and J exists and satisfies (36).
T

O A B
\
\\
\
\
\
\

\ <•

\

\

\

/ / / / /

/ / / / y
/ / / / /

/ / / / /
/ / / / /

" r)=hysg

/ / / / /
// / //
/ / / /
/ / / /

/ / / / /
/ / / / /

riLL -Z)

FIG. l.

Next we have | ?*2 <es rfi = J e~vH(p, v) dv,
iV 0

oo

[
iv

t-Ut-v)2lv. tdt
(pt-

(41)

We prove (37) of Lemma B by showing that for each v of (0, oo) H is of the
00

form of the right-hand side of (37) (noting that J e~v dv = 1).
o

We deform the ^-contour \y to oo, or AB, in a manner independent of v,
as follows. Let /x = y—A, h = min(2, \/JL\). With t = £-\-i-q we take a line
r] = hysgnfj, (— ±hy), and replace the original path AB by ACD of
the figure (drawn for the worst case, namely sgn î, = — 1). First, the pole
t = vjp is outside the shaded area, so thatf H = J . For the pole is on a

ACD

line (dotted in the figure) whose slope (tangent) is — y/y8; this is downward %
and steeper absolutely than yx > 14, steeper, therefore, than OC in the
unfavourable case (of the figure) when G is below A.

f The integrand is uniformly 0(e~K(2) as t -*• oo in the shaded area,
f Recall that in this proof we have y > 0.
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Taking the integral for H along ACD, then, we have

\pt-v\ > \im(pt-v)\ =

(since y > 14, £ > |y). So

J |e^-2«^|, (42)

where Bx = rt-ffl-y)*ly, r = 6+ift, (43)

and, as alternative forms,

A = -&+(r+l)t-Wly = {r+fr*)y-tft-(r+iyyply, (44)
reJB?! = _ 4 y + ( 6 + l ) | - ^ _ ^ / y + ^ / y . (45)

On AC we have £ = £?/, 17 = ahysgnfj,, 0 ^ CT ̂  1,

and since the last term is non-positive and 6+1 < f, r e ^ < —}y, and

J \eE^~H dt\ < e-\v(ly)-WC.AC < ^e-*». (46)
C
J

AC

For CZ) we have two cases.
Case (i). |/u| < 2. Here 17 = /xy (= imr.y),

' A =

J
CX> iy

The curly bracket is greatest for | = ^y, and it is then 36y-x. Taking this

outside, and then the integral from —00 to 00, we find that J is at most
CD

Combining this with (42) and (46) we have, in case (i),

\H\ < 9y-2(e-^+(27ry)^r+^y\ZQy-1). (47)

Case (ii). |/x| > 2. Here CD has 77 = 2ysgn.fi. We have from (45)

-Wly> since \fx\ > 2,

= -ly-my-ltt-zyYly < -\y
As before, \^~H\ < Sty-1, and so

CD
5388.3.5

001 J
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From this and (46), \H | < 9y-2e-*y,and(47)istruealsoincase(ii). A fortiori
H is of the form of the right-hand side of (37), and, as we observed above,
this proves (37). This completes the proof of Lemma B.

20. We now have Lemmas A and B (in which y now is not restricted to
be positive), and can take up Lemma 15. By Lemma 13 and (30) we have

T
F = lim f [-L{t)]teE dt,

iv
T

since reE = —\(t—y)2jy < —Kt2 as t->co. In J we may substitute
iv

— L(t) = ^ u\ + 2 U2 fr°m (27) and integrate term by term, since the two
series are boundedly convergent. If we then replace T by oo in each term,
the error is

00 00

2 J ux te
E dt + 2 J u2 te

E dt = 0{e~KTi J y 2 ) ,
T T

by (34) from Lemma A and (36) from Lemma B, and this tends to 0 as
T -> oo. Hence

where U(p) = j ux te
E dt-\- \ u2 te

E dt,
iv iv

and when we substitute from (35) and (37) (and make a couple of small
adjustments) we arrive at Lemma 15.

21. LEMMA 16. f For y^G^X^Owe have

F(y, A) = y - (27ry)h<r^)vli +??

Since 400|p|/(y2?/) < ZO/y < 1, Lemma 15 shows that F is equal to
something of the form of the 2 i n ^n e lemma, plus

Iy-Al>2 l 7 1 Y

When \y—A | > 2 we have

| (i) From now on A is non-negative (we normalized in the proof above to y > 0
and A of both signs), (ii) The &, of course, varies with the term it occurs in.
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and also |y/(y—A)| < 1+A < 2y. The first term in (48) is therefore

.\\p-i(y-Xr\p-iv — 1,9. (<LQ\
I ^ £i * \ f

P

since the curly bracket is less than (say) 10. Lemma 16 follows.

22. We are now in a position to develop the consequences of (NH), the
negation of the hypothesis (H). To assume (NH) is to assume that a zero
j30+iy0 exists (with y0 positive, by the symmetry) satisfying

(NH)

We begin by supposing that (for an undetermined Y) the relation
eL(y) ^ 1 for some y' occurring in Lemma 14 is not satisfied for the range
G ^.y < 47; that is, we suppose thatf

L{rj) < 1 for G ̂  T) < 47. (50)

By arguing from the pair of hypotheses (NH) and (50) we find ourselves
able to produce a 70 (actually G10) such that, if the 7 of (50) is 70, there
is a contradiction. Then (NH) implies (i) that (50) is false for 7 = 70;
so (ii) that for some y of the range G ̂ .y ^ 470 we must have L(y) ^ 1,
when Lemma 14 (with 4YQ for logX) gives ir(x)—]ix > 0 for some x of

2 < x < X = exp(470) [= exp(4G10)].

This, then, is what results from (NH), and since the X is greater than the

-Xj derived from (H), it is our final number.

23. LEMMA 17. If [in accordance with (50)] L(r)) < 1 for G < 77 < 47,

then for 4G < y < 7, 0 < A < G, we have

\F(y,0)\ < 1, (51)

\F(y,X)\ <67*+4. (52)

When A = 0, the condition |y—A| < 2 is vacuous, and (51) is a case of
Lemma 16.

Next, since L(t) is real for t > 0, we have, for A of 0 < A ^ G, by
(30) and (31),

-F(y,X) = f tL{t)(coaM-iain\t)e-w-vnv dt

= 9t—iJ, say. (53)

f This means 'for all 77 of the range', and similar interpretations are intended
wherever we do not explicitly have 'some'. This being the usual interpretation, we
may seem to be labouring the obvious, but the distinctions of 'all' and 'some' are
very vital, and complicated by ranges (those in Lemma 17) that 'look' alike, but are
not quite so.
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Consider the four expressions

j
4F

, say. (54)
In J2 we substitute \L(t)\ ^ 4e*' from Lemma 13, and, remembering that
4# ^ y ^ 7, we obtain

= Se-lv ( te-W-*u)-M-*v?lv dt<l. (55)
4y

In Ĵ  we have G < £ < 47, and so L{t) < 1 by the hypothesis (50);
hence, the curly bracket in (54) being in all four cases non-negative, we have,
algebraically,

oo

J (2y+2\t-y\)e-W-v*lv dt

= 22/(2-77?/)*+8y < 6y* < 6 7 i (56)

Since \F(y,X)\ < | ^ | + |«/|, from (53), and since \3%\+\J\is, for each y, one
{varying with y) of the four combinations ± ^ ± « ^ J we have, from (54) to (56),

|i%,A)| < 675+l + 2|#(2/,0)| < 6 7 H 4 ,

the desired result.

24. We now combine Lemmas 16 and 17, and take 7 = G10 (7 has this
meaning from now on). The upshot is that, subject to (NH), and to the
further 'hypothesis'

(Hj) L(rj)<l -(G^rj^tY),

we have, for A, y satisfying

0 < A < G, (57)

4G < y < 7, (58)

and for some set of #'s,

-?J (59)

where r = b-\-i{y—A).|
We now take A = y0, where y0 is the number in (NH), § 22. [A duly

t We go on to derive a contradiction from this state of things, as a result of which
one of (NH) and (Hx) must be false.
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satisfies (57).] So from (59) with A = y0 and so r = b-\-i(y—y0),

re 2 1
|y-yol<2 p

(60)
We need to know an upper bound for the number N of terms in the sum;

Lemma 1 (iv) with h = 4, T — y0—
2, gives

i V < ^ - l o g y 0 + 8 - 7 < log©. (61)

We proceed to choose, without violating (58), a y (= y0) for which the
real parts of the terms in the sum in (60) are all positive. In the first place,
since y > 14, the argument of any factor ijp lies between ±5°, and that
of any 1 -\-30&jy between ±1°. Now by Dirichlet's theorem there exists
a yQ satisfying 7* < ?/0 < Y*5N, (62)

and such that, for each, of the N y's satisfying \y—yo\ ^ 2,

where k is an integer. Further, with Y = O10 and N satisfying (61), y = y0

[satisfying (62)] duly satisfies (58). With y = y0 the arguments of all the
terms in the sum in (60) lie between ±80°; hence the real parts of all the
terms are positive, and the sum of them is at least as great as any one
term. Choosing the one term to be that with y = y0, we have

eBy0 < JIG = G1&.

With B = Z f 8log-2Z1, X\ = G, this contradicts y0 > 7* = G5 of (62).f
So either (NH) is false [and (H) true] or (Hj) is false. In the first case
TT(X)—]ix > 0 for an x < Xx\ in the second it happens for an x of

2 < x < X2 = exp(47) = exp(4G10) = exp(4Zf).

Since X2 > Xx = expexpexp(7-703), we conclude finally that 7r(x)—]i X > 0
for some x < X, where

1 0io3

X = expexpexpexp(7-705) < 1010 .

f There is a great deal to spare at this point: see the footnote on p. 50.
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