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ON THE DISTRIBUTION FUNCTION OF THE REMAINDER TERM 

OF THE PRIME NUMBER THEOREM.* 

Otto Toeplitz in Memoriam 

By AUREL WINTNER. 

Introduction. The classical result of Littlewood 1 on the distribution of 
primes, when expressed in terms of the standard function 

=(x) - > log p, Y A(n), where > AC) ='(), ( > ), 
pm - c n-< C$ tp n g (s) 

states that, under Riemann's hypothesis, 

(I) (x)- _ (log3 x) as x-> oo; 

while, according to von Koch 2 

(II) kx) x 
0(log2x) as x-oo. 

While (II) means that the remainder term, +/(x) - x, of Hadamard's 
prime number theorem, + (x) -- x, is at most 

? const. x0 (log x) 2 

for every sufficiently large x and for a certain positive constant, (I) states that 
this remainder term is at least 

? Const. xi log log log x 

for certain sufficiently large x and for another positive constant (where both 
signs actually occur in + Const. for certain large values of x). 

Correspondingly, neither (I) nor (II) implies any information concerning 
the asymptotic behavior of the remainder term. For instance, the upper 
estimate, (II) leaves open the question whether or not the even powers of the 
ratio on the left of (II), when measured on the proper scale of the prime 

* Received November 8, 1940. 
1 Cf., e. g., A. E. Ingham, " The distribution of prime numbers," Cambridge Tracts in 

Mathematics and Physics, no. 30 (1932), pp. 86-107. 
2 Cf. ibid., pp. 83-84. 

233 



234 AUREL WINTNER. 

number theory and then transformed into space averages (momenta), are such 
as to lead to finite asymptotic averages. Similarly, the lower estimate, (I), 
does not preclude the following possibility: There exists on the real axis a 
bounded interval with the property that the values of the ratio on the left of 
(I) are within this bounded interval for " almost all " values of the indepen- 
dent time variable just mentioned. 

The object of the present paper is to answer these questions by proving 
the asymptotic counterparts of the results (I), (II) of Littlewood and of 
von Koch, respectively. Needless to say, neither of the theorems to be proved 
is implie-d by- (I) and (II) together, although neither (I) nor (II) is implied 
by the two theorems to be proved. In fact, estimates from above and from 
below are necessarily of such a nature as to take into account possible accidental 
irregularities on every set clustering at infinity, even if these sets are of relative 
measure zero. On the other hand, such sets are irrelevant from the point of 
view of statistical averages. 

The situation can be illustrated by considering that part of Littlewood's 
discovery which was the most surprising; namely, the fact that the remainder 
term changes its sign infinitely often and in such a way that the deviation of 
xr- t(x) from xI can be arbitrarily large in either direction. The corresponding 
result of the present paper goes further in this qualitative respect, since it is 
to the effect that the curves y == x& (x) and y =x cross each other in arbi- 
trarily distant ? y-regions with nonl-vanishing relative frequencies, and not 
only infinitely often (it being understood that the relative amount of time 
spent in a y-region is measured on the scale of the proper independent time 
variable of the prime number theorem.) But this does not imply any explicit 
Q-estimate. 

Riemann's hypothesis will, of course, be assumed throughout; otherwise 
the problems under consideration, like the problems considered by Littlewood, 
either do not arise at all or are known to be of a trivial nature. 

It may be mentioned that the main difficulties of the problem arise from 
the fact that nothing is known about the Diophaintine structure of the non- 
trivial zeros. In particular, if it were true that these zeros (or, rather, their 
imaginary parts) are linearly independent in the rational field, then, as pointed 
out previously,3 much more than that what will now be proved could be inferred 
directly from the theory of infinite convolutions. 

The proofs will depend on a fact, which I proved a few years ago,3 to 
the effect that the trigonometric series (in t = log x) occurring in the explicit 

3 A. Wintner, " On the asymptotic distribution of the remainder term of the prime- 
number theorein," American Journal of Mathematics, vol. 57 (1935), pp. 534-538. 
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formula of iRiemann and von Mangoldt is actually the Fourier expansion of 
the function which it represents (the Fourier character being meant in the 
sense (B2) of the theory of almost periodic functions). Due to this fact, the 
asymptotic distribution theory of almost periodic functions of a real variable 
becomes applicable and leads, without too much effort, to the asymptotic 
counterpart of (II), indicated above. The asymptotic counterpart of (I) lies 
deeper, since it depends not only on the asymptotic distribution theory of almost 
periodic functions of a real variable but also on a lemma concerning asymptotic 
averages connected with analytic, uniformly almost periodic functions of a 
complex variable. 

Although the lemma in question regulates the increase of mean values 
which are represented by asymptotic averages and not, as usual, by integrals, 
it is only a manifestation of the maximum principle, and so one would expect 
it to be standard; however, it does, not seem to be available in the literature. 
In order to avoid an interruption of the following considerations, this lemma 
will be established first (in a form slightly more general than necessary for 
the problem at hand.) 

1. If f(t) is defined for 0 ? t < so and is integrable (L) on any 
bounded t-interval, put 

T 

Mt{f (t)} lim Tf f (t) dt, 
T->oo T 

0 
whenever this limit exists. 

LEMMA. If pa function g =g (o, t), defined on a strip 

a _- C?_, - oo < t < oo, 

is non-negative, subharmonic and such as to satisfy, uniformly in a, an estimate 
of the form 

g(0,t) = (I t C c) as t -> --- oo 

where C is a sufficiently large constant, and if g(or, t) is, for every fixed ar con- 
tained in the interval a _< a /3, a uniformly almost periiodic function of t, 
then the least upper bound of Mt{g(cr, t) } for a ? or ? /3 is either Mt{g(ac, t) } 
or Mt{g(/3,t)}. 

It will be seen from the proof that, instead of the assumption of uniform 
almost periodicity on every fixed line ur, it is sufficient to require that, if C is 
fixed, the ratio 

T+T 

/1-/1(T5;) g (o,, t)-dt 

T-T 
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should tend, as T-> oo, to ]lIt{g(r,, t)} uniformly for all T, where - 0 < T 

< 0o. Although this requirement, which is necessarily satisfied in the case of 
uniform almost periodicity, does not necessitate even 'a generalized type of 
almost periodicity, it represents a condition which need not be satisfied if the 
function, instead of being uniformly almost periodic, is almost periodic (Bq) 
for some (or, for that matter, for every) value of q. 

If the statement of the Lemma is true on every sufficiently short sub- 
interval of a -< a /3, it is true on the whole interval a _< a ?< /8. Hence, it 
can be assumed (after a translation) that - 7r < a and /8 < j7r. Then, if a' 
is any point of the interval a ?r < /3, the subharmonic character of g and 
the uniform 0(I t I C) -estimate (and, as a matter of fact, even a weaker 
estimate of the Phragmen-Lindelof type) are known 4 to imply that there 
exists for every E > 0 and for every T > 0 a point 

(900 to) ' (OO(E, T; a), to(E, T; a)) 

which is situated on the boundary of the strip a ? ,Q -o < t < oO, and 
satisfies the inequality 

T' T 

g (osa t)dt- e (eT -e-T) COS g(ao, t + to)dt. 
-T -T 

Since aro co (e, T; v) is either a or ,B, the value of the last integral cannot 
exceed 

T T1 

Max(f g(a,,t+to)dt, f g(13,t+to)dt), 
-T -T 

where Max (A, B) denotes A or B according as A ? B or A ? B. Hence, 
division by 2T shows that, in terms of the above abbreviation, fu, for the 

resulting ratios, 

(T~ 0; -)1,ET l(eT-- e-l') cos or -< Max (,u(T, to; a), j(lT, to; jB) 

where to = to (c, T; a-) is a certain real function. 
For a given -1 > 0, choose a positive R = R (-) so large that 

u (T, to; ) -Mt{g(, t)} 1 < - and I /,(T, to; 8) -Mt{g,(3, t)} <1 

C 4Cf. G. H. Hardy, A. E. Ingham and G. P6lya, " Notes on moduli and mean values," 

Proceedings of the London Mathematical Society, ser. 2, vol. 27 (1928), pp. 401-409 

(more particularly pp. 407-408), where further references are given. The inequality 

referred to above is, save for the notation, identical with the case c = 0 of the first in- 

equality on p. 408, loc. cit. 
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whenever T > R (-). The existence of such a function R of -q alone is assured 
by the assumption that the limit relation 

~t(T, T; ) --Mt {g (a, t) T}, T oo, 

holds uniformly for all values of T (where r = to(E, T; u) X to), if the line 

C (where C oc, /3) is fixed. Thus 

,u(T, 0; u) - jET-1(eT - e-T) cos C? + Max (Mt{g(, t)}, Mt{g(/, t)}) 

whenever T > R(-q). Hence, on letting E-> 0 and B-> 0 (in this order), one 
sees from 

fk(T, O; a)->Mt{g (a, t)}, T-oo, 
that 

Mt {g (u, t)} ? Max (Mt{g (, t) }, Mt {g (,3, t)}). 

Since this inequality holds for any point C of the interval ac _ C c , the proof 
of the Lemma is complete. 

2. By a distribution function ( a(oc), - oo <ca < oo, is meant any 
monotone function for which 4 (- oo) 0 and ( oo ) = 1. The spectrum 
of a q is defined as the (necessarily closed) set of those points ac for which 

(a,') #/ o (c,") whenever a' < ac < a". Let [4] denote the maximum (?< oo) 
of the absolute values of the numbers ac contained in the spectrum of p; so that 
[4] < oo if and only if the spectrum is a bounded set. For k 0, 1, 2, 
let Mk(p) be an abbreviation for the k-th momentum, 

M(d) = () 
-00 

provided that 
0 ~~~~~~~~~00 

ckdo, ( ) -oo and okdo (a) - 
o 

-00 0 

do not hold simultaneously. Thus M2k (p) is always defined but can be m. 
It is easily verified that, as k -> oo, the 271-th (non-negative) root of M2k(0) 
always tends to the limit [4] (which can be oo ); it being understood that 
[4] =- oo if, but not only if, M2k(k) = 00 from a certain k onward. 

For a given real-valued (measurable) function f = f(t), - oo < t < so, 
let f(a) f(a) (t), - oo < t < oo, denote the characteristic function of the 
t-set defined by f (t) < ac, where ac is any fixed real number; in other words, put 
f(a) (t) = 1 or f (,a) (t) = 0 according as f (t) is or is nlot less than a. If there 
exists a distribution function 4 with the property that, unless ac is a discon- 
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tinuity point of 4, the t-average Mt{f(a,) (t) }, as defined at the beginning of 

? 1, exists and is equal to 4 (a), then f = f (t) is said to have an asymptotic 

distribution function, p. It is very important (possibly, though not probably, 

also for the result of the present paper), that Mt{f(a) (t) } is not required to 

exist if ac is one of the (at most enumerable) points at which the monotone 

function 4 has a saltus. 
It is known 5 that if f is uniformly almost periodic, it possesses an asymp- 

totic distribution function, 4, and that the spectrum of this 0 is identical with 

the (bounded) interval representing the closure of the values attainled by f(t) 
for - oo < t < oo; so that, in particular, [4] is the least upper bound of 

I f(t) I 
If f(t) ; fl(t), f2(t), - 00 < t < 00 are measurable functions, 

fn is said to tend, as n -> oo, to f in relative measure if, for every fixed E > 0, 

T 

limsup C {1 f (t) - fn(t)(e)}dt -> 0 as q-- oo, 
T->oo 2TJ) 

-T 

where the integrand, { }, is the characteristic function of the t-set defined by 

I f (t) - fn (t) ? - e (the function I f (t) - fn (t) I (e) representing the charac- 
teristic function of the t-set defined by I f (t) - fn (t) I < E). It is known 6 

that if fn tends to f in relative measure, and if every fn has an asymptotic 

distribution function, On, then f has an asymptotic distribution function, 4, 
and that fn - 4. It is understood that fn -> 4 means that 4n,(a) +> (a) 

holds at every a, which is not a discontinluity poilit of 4. 
It follows, in particular, that every relatively almost periodic function f 

has an asymptotic distribution- function; f being define1d to be relatively almost 
periodic if it is measurable an-d such that there exists a sequence of uniformly 
almost periodic functions fl/ /2, which tend to f in relative measure. This 
implies that f has an asymptotic distribution fuletion whenever it is almost 
periodic (Bq) for some q; in fact, conlvergence in the mean (of any index q) 
necessitates convergence in relative mneasure. On the other hand, straight- 
forward examples show that f can be relatively almost periodic without beinlg 
almost periodic (B). 

3. Let the function 7h h(t) be defined for 0 < t < oo by 

,.2th 1t (e 
., 

t) 
- eDt ( t> 

5A. Wintner, Spektraltheor-ie der- uinentdlichen Mlatrizen, Leipzig, 1929, pp. 267-272; 

cf. B. Jessen and A. Wintner, " Distribution functions anld the Riemann zeta function," 
Transactions of the Amer-ican JMathematical Society, vol. 38 (1935), pp. 48-88, more 

particularly p. 77. 
6 Cf. B. Jessen ancd A. WiTintner, Joc. cit.5, pp. 75-76. 
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so that the lower and upper estimates mentioned at the beginning of the 
Introduction become 
(I) h (t) Q+0,(log log t) 
and 
(II) h(t) 0(t2), 

respectively, while the prime number theorem appears in the form 

h(t) o (elt); (t -> m). 

Under Riemann's hypothesis, let 

2+- i-yn * * * 2 + i-Y-nn**, 
where 0 < 71 < * yf *. 

denote the sequence of the complex zeros of the c-function. The signs of 
equality are not excluded, a multiple zero, if any, being reckoned in accordance 
with its order. 

Since 
(1) y"-'27rn/logn, (n ->oo), 

the trigonometric series 

(2) n(t)= :l(+ + e2Slt -2 sin t 
n=1 +i'yn -1 7n 'yn 

has a uniform majorant for all t and defines, therefore, a uniformly almost 
periodic function, @(t). On the other hand, the explicit formula of Riemann 
and von Mangoldt states 7 that the trigonometric series 

00 

(3) -2 n -,-'sin ynt 
n,=1 

is convergent (for 0 < t < oo ) and represents a function, say f (t), for which 
the sum f (t) + @o (t) differs from the reduced remainder term, 

+(X) -x X (et) -el 

X2 '= et/2 

of the prime number theorem only in a Dirichlet phenomenon (at the discon- 
tinuity points) and in the trivial additive terms 

((0)O 1 00g 1_ -2 log27T and 21lg(1-x-) = _____ 

~(0) f=1-2nX2~ 

(respectively introduced by the pole, s = 0, and the real zeros, s - 2n, of 
the C-functiorr). Since +(x), where x - et, has at every prime power, x =p", 
the saltus log p, an-d is otherwise continuous, it follows that 

(4) ho(t) f(t) + (t) - e-2t{log2w + _log(1- e-2t)} for 0 < t < oo 

7Cf. A. E. Ingham, loc. cit.', pp. 76-78. 
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where 

( 5 ) ho (t) = h(t 
ht2 ,) 

h (t)-ho (kt) pnmlogp tif t=m log p; 
so that 

(6) ho(t) - f(t) - @(t) >O and h(t) - ho(t)- 0 as t - oo. 

The function f (t) has thus far been considered as defined by the odd 
trigonometric series (3) only for 0 < t < oo. The number-theoretical meaning 
of this series for negative t is well known 8 but will be immaterial in what 
follows. 

4. The mere fact that the trigonometric series (3) represents the prin- 
cipal part of the reduced remainder term, (+j(x) - x)/x , of the prime number 
theorem does not involve any information as to the behavior of the function 
f (t), where x = et (the situation is well illustrated by the immensity of the 
gap between the estimates (I) - (II), ? 3). For instance, it is easy to see 
that a trigonometric series which is convergent for - oo < t < oo can repre- 
sent a function (even continuous) which has neither an asymptotic distribution 
function 9 nor Fourier averages, Mt {eiXt f(t)}. 

It was suggested by an apparent parallelism between certain problems 
in celestial mechanics 10 on the one hand and the "wobbly" terms of the 
explicit formula of Riemann and von Mangoldt on the other hand, that, by 
leaving aside for a moment the aspect of the Abschatzungen and replacing it 
by a point-of-view in theoretical astronomy, it would perhaps be possible to 
obtain some new insight into the irregularities of the prime number distribu- 
tion. In this direction, it was possible to prove 11 that, after a suitable 
extensioin of f (t) and h (t) for negative t (cf. the beginning of ? 5): 

There exists for the function defined at the end of ? 3 an anharmonic 
analysis, i. e., that the time averages Mt{eiXt f(t) }, where - oo < X < co, 
exist; 

8 Cf. A. E. Ingham, loc. cit.', pp. 80-81. 
9 H. Poincare, Oeuvres, vol. 1 (1928), pp. 164-166; cf. A. Wintner, " Ueber die 

kleinen numerischen Divisoren in der Theorie der allgemeinen Storungen," Mathe- 
matische Zeitschrift, vol. 31 (1929), pp. 434-440. 

10'A. Wintner, " Sur l'analyse aiiharmoilique des iiiegalites seculaires fournies par 
l'approximation de Lagrange," Rendiconti Reale Accademia dei Lincei, ser. 6, vol. 11 
(1930), pp. 464-467, and "Ueber eine Anwendung der Theorie der fastperiodischen 
Funktionen auf das Levi-Civitasche Problem der mittleren Be\wegung," Annali di Mate- 
matica, ser. 4, vol. 10 (1931-32), pp. 277-282; cf. also "Almost periodic functions and 
Hill's theory of lunar perigee," American Journal of Mathematics, vol. 59 (1937), pp. 
795-802, and " On an ergodic analysis of the remainder term of mean motions," Pro- 
ceedings of the National Academy of Sciences, vol. 26 (1940), pp. 126-129. 

1-1 A. Wilntlier, loc. cit.3. 
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That the values of these Fourier averages are precisely those which one 
would expect on the basis of the formal series (3), i. e., that the prime numbers 

pl p2, * * * (by means of which (4) is representable, via (5), in finite terms) 
and the complex zeros 1 + iy1, ?+- i2, ** are connected by the following 
mysterious " dispersion formula ": 

(7) Mt {eth (t)}= unless X 
= ? 

Finally, that f (and, therefore, h) is almost periodic (B2), which ensures, 
in particular, the existence of an asymptotic distribution function. 

These facts imply, but are by no means implied by, a result of 
H. Cramer 12 (although the proofs require only an adaptation of Cramer's 
proof); a result according to which the quadratic t-average exists and is equal 
to the square sum of the amplitudes. In fact, not even the existence of the 
averages Mt {Oeit h (t) } follows from this result. 

Incidentally, not even the existence of all averages Mt{g2} < oo and 
AI t{eiXt g (t) } together assures that g (t) has an asymptotic distribution func- 
tion. All that is clear is that if all these averages exist, g is or is not almost 
periodic (B2) according as the sum of all squared amplitudes, I Mt{e0t` g(t) } 2, 

is equal to or less than Mt{g2}; it being understood that the set of those real 
numbers X for which Mt{e0Xt g (t) } is distinct from 0 is at most enumerable 
by virtue of the assumption Mlt {g2} < 00. 

In this connection, it would be interesting to know whether or not the 
existence of all Fourier averages Mt{e0xt g (t) } alone, or perhaps together with 
the assumption of a finite average for I g I (but not for g2), implies that the 
A-set defined by Mt {ext g (t) } #7? 0 is at most enumerable. 

5. As mentioned in the second paragraph of ? 4, the function f(t) is 
now thought of as defined for negative t also. This is the more necessary as 
the notion of almost periodicity (B2) is usually referred to the limit of the 
symmetric time range - T < t < T. In view of (3), it is natural to extend 

f(t) to negative t by f(t) = f (-t). The effect of this extension on the 

asymptotic distribution can be interpreted as follows: 
Let a (t) be a funietion which is defined only 0 ? t < oo and which has, 

with reference to this half-line, the asymptotic distribution function x(a), 
-co < a < co. Then, if a a', a c=a" (> a') is any pair of real numbers 

which are not discontinuity points of x (a), the difference X (c') X (') 
represents the asymptotic relative amount of time spent by the curve a a (t), 

12 Cf. A. E. Ingham, loc. cit.3, p. 106, where further references are given. 
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0 ? t < oo, in the strip a' < a. < a" of the (t, a) -plane. Hence, if the func- 
tion a (t) is extended to negative t by the conditioni a (- t) -a (t), and if 
the asymptotic distribution is referred to the limit of the symmetric t-range 

T < t < T, the result is the same as if one would consider a (t) only for 
positive t but restrict a', ac" by a" a- c'. The existence of an asymptotic 
distribution function now means that there exists a monotone function x(a), 

00 < a < oo, which is of total variation l and such that, if / is any positive 
number for which neither a = /3 nor a ,= - / is a discontinuity point of x (a), 
the difference x (13) - x (- /) represents the asymptotic relative amount of 
time spent by the curve a = a(t), where 0 ? t < oo, in the strip -,3 

< a(t) </,. 
It is seen from ? 4 that what are usually called, under Riemaun's hy- 

pothesis, the irregularities of the prime number distribution are, as a matter 
of fact, no irregularities at all, except when measured on the logarithmico- 
exponential (Q, 0) -scale; a scale which is, of course, incapable of expressing 
the hidden almost-periodicities of anharmonic analysis. It would even be 
possible that f(t) is not only almost periodic (B2) but is equivalent (B2) to a 
uniformly almost periodic function. Actually, such a uniformly almost periodic 
function cannot exist. More than this is implied by the following theorem: 

Under Riernann's hypothesis, the asymptotic distribution function of the 
reduced r-emainder term, 

h (t) (+(x) -x)/xl-, (x et), 

of the prime number theor-em is such as to possess 

(i) a spectrmum which is untbounded in either direction of the c-axis (cf. 
the first paragraph of ? 2); 

(ii) momenta of arbitrarily high order which, in addition, do not itncrease 
more rapidly than (const. k2)k, if k is the index of the momentum (this esti- 
mate cannot ensure that the momenta determine the distribution function 
uniquely). 

As explained in the Introduction, (i) and (ii) can be interpreted as dis- 
tributional counterparts of (I) and (II), respectively. 

Since (3) is the Fourier series (B2) of f(t), the function f(t) has for 
oo < t < oo the same asymptotic distributioni funiction as for 0 < t < oo. 

On the other hand, it is clear from (6) that h(t) -a(t), where 0 < t < oo, 
has the same asymptotic distribution function as f (t). Since (2), being uni- 
formly almost periodic, is a bounded function, it follows that it is sufficient 
to prove (i) and (ii) for the asymptotic distribution function of f (t), instead 
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of for that of h (t). This means, in the niotations of ? 2, that the statements 
(i) and (ii) are equivalent to 

(i) Fol =_ lim M2jk (0) 1/2k X 0 
k-0oo 

and 

(ii) Mlk (0) 1/k, o (k2) 

respectively, where 4 denotes the (necessarily symmetric) asymptotic distri- 
butioll function of the almost periodic (B2) function f(t) which occurs in 
(4)- (5) and which has the odd Fourier series (3). 

6. It is clear from (1) that the Dirichlet series 

00 

2 : y-n_ e-/nS 
n=1 

represents an analytic, almost periodic function in the half-plane r > 0. Let 
f (ay t) denote the imaginary part of this analytic function; so that 

00 

(8) f (o- t) 2 ] yn-le-i'1 sin yjt, 
n=1 

where a > 0. 
Since (8) is, on every fixed line or(> 0), the Fourier series of the uni- 

formly almost periodic function f(o-, t) of t, and since f (t) is almost periodic 
(B2), with (3) as Fourier series, the Parseval relation is applicable to the 
difference f(t) -f((, t). Thus 

00 

Mt{[f(t) -f(0( t)]2} ]? Yn-2 ( e-2Yn; (yo > 0). 
n=1 

Hence, it is clear from (1) that 

Mt{[f(t) -f(( t)]2} -O0 as a -*0. 

This relation, when compared with the last two paragraphs of ? 2, implies 
that, if 4)u 4 0,(a), - oo < a < oo, denotes the asymptotic distribution func- 
tion of the uniformly almost periodic function f (o, t) of t, then 

(9) 0~~~~~<t, --> as a - O. 

Another property of the distribution functions 4)u which will be used is 
the fact that 
(10) [4M] lim M (0,) 1/2k > oo as o- 0. 

7C-00 

It is clear from the first and the third paragraphs of ? 2 that (10) is equi- 
valent to the statement that the least upper bound of If (, t) for - 

< t < 0o tends to oo as r -> 0. Hence, it is sufficient to show that f (or, ar) I > 
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oo as 0 - 0. Actually, it is known 13 from Littlewood's proof of the Q-theorem 
(cf. the Introduction) that the relation 

(10 bis) f ((, a) -- C log a, where C = const. 7& 0 and a r O, 

holds with a bounded remainder term. Without an estimate of the remainder 
term, the asymptotic relation (10 bis) itself, which is more than sufficient for 
the present purpose, can be established very easily, as follows: 

If ll, 32< . . . is any non-decreasing sequence of numbers which tend to 00 

in such a way that 
:, I -rL (r), (r -> o 

f3n < r 

holds for some logarithmic function, L (r), then, according to an elementary 
lemma of Polya,14 

00 
00 

holds for any continuous function F (x), 0 _ x < oo, which is 0(X-l-e) as 
x - oo. Since (1) is equivalent to 

Xy <r rlo (r oo), 

it follows, by choosing p,, = yn and F(x) - e-x sin x/x, that 

00 

> (r/yn) exp (-y /r) sin (yn/r) --crlogr, (r co), n=1 

where c is a non-vanishing constant. Hence, (10 bis) follows by choosing 
( t in (8) and placing r = 1/o. 

7. According to (1), the sum of the absolute values of the coefficients 
of the uniformly almost periodic series (8) in t is obviously convergent. 
Hence, it is clear (without any existence theorem 15) that the Young-llausdorff 
inequalities are applicable to (8) on every fixed line (r(> 0). Thus, if ks is a 
positive integer, 

00 

Mt{f (a, t) 2k}1/2k ? { : 
(yn-e-Yna)?2kl(2k-1)}(2k-1)12k 

n=l 

13 Cf. A. E. Ingham, loc. cit.1, pp. 98-99. 
14 G. Polya, " Bemerkungen uiber unendliche Folgen und ganze Funktionen," Mathe- 

matische Annalen, vol. 88 (1923), pp. 169-193, more particularly pp. 176-177. 
15 In this regard, cf. HI. R. Pitt, " On the Fourier coefficients of almost periodic 

functions," Journal of the London Mathematical Society, vol. 14 (1939), pp. 143-150. 
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Since y. > 0 and a > 0, the series, { }, on the right of this inequality 
is majorized by the series 

00 
) ~~~~~~~C21k 7n -n2k/ (2k-1 ) 

Th=1 

which is convergent, by (1). Thus 

Mt{f(, t) 2}1/2k < (C2k) (2k-1)/2k for every a > 0. 
Furthermore,16 

(12) Mt{ff (v, t) 2,} M2Z(; ) 

where M2V (qa) denotes the 2kc-th momentum of the asymptotic distribution 
function, Oa, of the uniformly almost periodic function f (a, t) of t. Conse- 
quently, 

(13) M21k(qa) < (C2k)2121 for every a > 0, 

where C%* depends only on kc. 
Accordingly, 

o0 

limn sup f c2kdOa (ca) < oo 

-00 

for every fixed 71. Hence,l7 
-r oo 

(14) limrsup (+ )a 2k dp(a) ->0 as r >oo 

if k is arbitrarily fixed; in fact, 

-r oo oo 

( b+ al a2k-2 do,(a) c:: r-2 Jsa2k doo,(a). 
-oo r _ 

8. At the beginning of ? 6, the function f(a, t) was defined as the 
imaginary part of a function which is regular analytic in the half-plane a > 0. 
Hence, f(a, t) is an harmonic function, and therefore its 2Ak-th power is a 
non-negative subharmonic function, in the half-plane a > 0. Furthermore, 
(8) and (1) imply that f ((, t), and therefore its 21k-th power, is uniformly 
bounded and uniformly almost periodic in the half-plane > c, where e > 0 
is arbitrary. Hence, the Lemma of ? 1 is applicable to g (o, t) f (o, t)2k on 
any subinterval a _< a < ,B of the interval 0 < a < 0o. 

16 A. Wintner, loc. cit.5, p. 271. 
17 This standard step amounts to an application of Tchebycheff's inequality. Cf., 

e. g., A. Kolmogoroff, " Grundbegriffe der Wahrscheinlichkeitsrechnung," Ergebnisse (er 
Mathematik und ihrer Grenzgebiete, vol. 2, no. 3 (1933), pp. 37-38. 
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On the other hand, it is clear from (8) and (1) that 

f(U, t) -> 0 uniformly for - o < t < so, as a--> co. 

This implies that, if k is arbitrarily fixed, 

Mit{f (or, t) 2k} *> O as a s o. 

Since, by the Lemma of ? 1, 

Max Mt{f (o, t)2k} Max (Mt{f ((X, t) 2k}, Mt{f (/3 t) 2k} ) > 0 

whenever 0 < a < 1 < so, it follows that the function Mt {f (u, t)2k} of c must 
be monotone and non-increasing on the interval 0 < a < so. 

Consequently, on letting u - 0, one sees from (12) that 

(15) M21k (0) _ lim M2k(k1) for every a > 0. 

It is understood that the limit on the right of (15) exists in the sense that it 
might be + so ; actually, it is finite, by (13). 

9. Since the space of the functions of t which are almost periodic (Bq) 
for some fixed q 1 is a complete space (with reference to the topology of 
the (Bq)-metric), the proof of the Young-Hausdorff extension of the Fischer- 
Riesz existence theorem can be transcribed from (Lq) to (Ba) without any 
change.18 On the other hand, it is clear from (1) that 

00 

> 7l-E < so for every E > 0. 
n=1 

Hence, there exists for every q > 1 a real-valued function f(q) (t) which is 
almost periodic (BQ), has the Fourier expansion (3), and satisfies the inequality 

00 

Mt{j f(q) (t) Iq}i/q _ { y y-q(q-1)}(q-lq/ 
n=l 

In particular, if q is an even positive integer, 

(16) Mt]{f(2k) (t)2k} ? (C2k)2k-l 

by (11). 
Since f(2J,) (t) is almost periodic (B2k) and has the Fourier series (3), 

it is clear from the last two paragraphs of ? 2 that the asymptotic distribution 
function of the n-th partial sum of (3) tends, as n-> co, to the asymptotic 
distribution function of f(2k) (t). Hence, the asymptotic distribution func- 
tion of f(2k) (t) is independent of k. Since b was defined (? 5) as the 

18 Cf. H. R. Pitt, loc. cit.-5, pp. 144-148. 
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asymptotic distribution function of the function f (t) which is represented by 
the convergent series (3), and since this f (t) is, accordinlg to ? 4, almost 
periodic (B2) and such as to have the Fourier series (3), it follows that c is 
the asymptotic distribution function of every f(2k) (t). But (16), where 
C2k < co, holds for arbitrarily large values of k. Consequently,19 

(17) MtIt{f(2k) (t)2k} =M2kp) 
for every k. 

In particular 
(18) M2k(() < co 
and so 

-r oo 

(19) f2+f2kdo (a) O> as r ->oo, 
-00 r 

where k is arbitrary. 
Let r be an arbitrary positive number which is such that neither a r 

nor a = - r is a discontinuity point of the monotone function ( +(a). 
Then, according to ilelly's theorem on term-by term integration, 

r r 

4a a2kdo Q(a) 4a c2kdo(a) as cr 0, 
-r -r 

by (9). Hence, on keeping k arbitrarily fixed, one sees from (19) and (14) 
that 

00 00 

a 22kdo (pa) 5 2k do (a) as a--> 0. 
-00 -00 

This means that 
(20) lim M2jk(o ) =M2Q(0) 

holds for every 7k. 

10. According to the first paragraph of ? 2, 

lim M2VC(O) 1/2"k ]X 

-k-ooo 

But, from (15) and (20), 

M2,k(0pu) - M2k(() for every a > 0 and for every 7k. 
Hence, 

lim M2C (Oa)1/2k? [(] for every a > 0. 
k-*oo 

19 Cf. B. Jessen and A. Wintner, loc. cit.5, p. 76. 
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On comparing this with (10), one sees that the proof of (i), ? 5 is complete. 
Clearly, this proof depends essentially on the relation (15), which in turn 

depends on the Lemma of 1? 1. In this sense, (i), ? 5 lies much deeper than 
(ii), ? 5, since (ii), ? 5 depends only on (13) and (20). 

In fact, it is clear from (11) and (1) that, as k-> co, 

00 

C2 0 Y (n-1 log n)2k/(2k-1) 0 (W-I log X)2k/(2k-l)dx. 
n=l 

1 

But the last integral can be written in the form 

00 00 00 

(e-zx) 2k/(2k-1)dex = A7 f e-x2k/(2k-1)dx < Ak 4 e-Ox2dx, 
0 0 0 

where 

Hence Ak (27k- )(4k-l)/(2k-1) 0 (2k - ) 
2 - 

o(k2). 
H ence, 

C2 0(k21) as k ->oo. 

Since (13) and (20) imply that 

M2k ( C2k ) 
2k 

it is clear from the Schwarz inequality that the proof of (ii), ? 5 is complete. 

THE JOHNS HOPKINS UNIVEJRSITY. 
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