200 P. Erdds. Density of the sum of two sequences.
8 (1 — )
hence - ( o ——— ) ,
and this is the theorem.
1 can prove in the same way that if a sequence a;, a,,... is

given and there are f(n) of the a's not exceeding 7, then in the set
|at A|, there are at least

fn)+—

numbers not exceeding 7. ) ‘
Before closing my paper I would express my sincere gratitude to
Prof. L. J. Mordell for having so kindly helped me with my ms.

(Received 11 March, 1935.,)
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A note on the distribution of primes.
By

A. E. Ingham (Cambridge).

If = (x) denotes as usual the number of primes not exceeding x,

then, by the prime number theorem, = (x) ~ li X (as x~»co), and, by
a well known theorem of Littlewood 1),

(1)

) —lix=Q+ xx log log log x

The first aim of this paper is to give a proof of (1) without the use of
the Phragmén-Lindel6f theorem which was an essential feature of Little-
wood's original proof; and the second is to adapt the method to the
proof of the following result, in which ® denotes the upper bound of

the real parts of the zeros of the Riemann zeta-function CE)=L(s+i1).

Theorem A. If O is atlained, i. e. if L(s) has a zero on the line

o=, then there exists an absolule constani A>1 such that, for all x>>1,
the interval (x, A X} contains an integer n and an integer n’ satisfying

n (n) < li n, 1:[/1’)>'l.i n,

The possibility of dispensing with the Phragmén-Lindelsf theorem

and the resulting advantages for the detailed study of the difference

!) See E. Landau, Vorlesungen iiber Zahlentheorie (Leipzig, 1927), II. 123 —150;

or A, E, Ingham, The distribution of prime numbers (Cambridge, 1932), Chapter V.,
[These books will be quoted as ,, Vorlesungen® and ,Prime numbers*” respechvelv] The
notation is that of Prime numbers. :

14, Acta Arithmetica, 1. 2,
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n(x)— li X, have already been demonstrated by Skewes?) in his account
of the method by which he obtains (on the Riemann hypothesis) a nu-
merical upper bound for the position of the first change of sign of this
difference. The argument which replaces the Phragmén-Lindelsf theorem
in the present paper is not very different in principle from that indicated
by Skewes, the main difference of detail consisting in the use of the ,Fejér
kernel” in place of the ,Poisson kernel”. The method is suggested in part
by the systematic use of the Fejér kernel by N. Wiener in his work on
Tauberian theorems.

If we denote by V(X) the number of changes of sign of the se-
quence % (n) —lin(n=2, 3,...) or of the function =(X)-~ 1l x in the
interval (2, X), we infer at once from Theorem A that, if O is attained

(in particular if ®=—;—, i. e, if the Riemann hypothesis is true), then

Y - 1

im =— >0.
Xor 0o logX  log A
The corresponding problem of the frequency of changes of sign of the

qerror term” in the asymptotic formula ¢(x) ~ x, where

4= logp=Y. Aln)

sy nsx

(2)

( the p’s being primes and the m's and n's positive integers) has
been studied by Pélya. He has proved, without hypothesis, that, if W (X)
is the number of changes. of sign of ¢ (17)—=n, or of ¢(x) — x, in (2, X),
. then

@) Tim Y gy,

Xoco 108X

His proof is based on a general theorem, which shows that similar
results hold for various ,averages" of §(¥)—x. This is so, in parti-

cular, for the function
(]

2 (A(n) —1) ™™

n=:1

) 8. Skewes, ,On the difference = (x)— li (x) (1}, Journal London Math, Soc.
8 (1933), 277 — 283, .

}) G. Pélya ,Uber das Vorzeichen des Restgliedes im Primzahlsatz”, Gottinger
Nachrichten (1930), 19 — 27, Prof, Pélya informs me, and asks me to take the opporlunity
of mentioning, that the statement , ... und nicht fiir 7> m, wegen (24)* on.p. 26 of
this paper (fourth line after formula (24)) is false, but that in his opinion the error can
easily be corrected.
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(substantially the ,Abel mean” of ¢ (x)—-x), and for this function Polya
has indeed proved, on the Riemann hypothesis, the stronger result with
lim in place of lim%). For V(X) it is natural to expect that more special
arguments will be required. For the proof that m(x)—1lix changes
sign at all turns essentially on showing that the noscillating part* ulti-
mately overpowers the ,negative part”; and the situation is completely
changed by averaging, at any rate if the Riemann hypothesis is true %),
For the same reasons we cannot hope to obtain for the lim in (2) any
such simple estimate in terms of the zeros of {(s) as in Pély—ﬂ theorems,

If @ is not attained {in particular if ® =1), I am unable to prove
anything about V(X) by the methods of this paper. But, if the general
theorem of Pélya referred to above has a natural analogue for functions
with logarithmic singularities (instead of poles), we could deduce from

it that, if 0 is unattained (so that @>_3) , then
lim Vi) == 00
Xorco log X

and this combined with Theorem A would give at any rate the ana-
logue of (3) without hypothesis.

2, Write

flx)= ™ (%) — li , W)= ¢ —x

Flu)=f(e",
Then by trivial or classical arguments

@  |f—f)| <<An®logn n=x=n41;n=23,...),

Glu)=g(em.

) i~(-) u
(6} IF(ZL)—GUZ)I<142€(2 )—I-As(u+1)‘1 (2>>0),

where A4;, A,, ... are positive absolute constants ).

Y) G, Pélya, ,On polar singularities of power series and of Dirichlet series”,
Proc, London Math, Soc. (2), 33 (1932), 85— 101 (§ 7). The ideas of this paper are
further developed and illustrated in the paper which follows it: A. Bloch and G, Pélya,

aOn the roots of certain algebraic equations”, Proc, London Math Soc. (2) 33 (1932),
102 — 114,

%). Ci Prime numbers, 92— 93 and 105 — 106,
®) (4) is trivial, For (5) cf, Vorlesungen II, 129—130; or Prime numbers 103—104.

. i
It is assumed (in both places) that @ = '2—, but ithe arguments give (5) without this

hypothesis (the first term on the right arising from the contribution of prime powers
higher than the first),
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We start from the formula

b b .
©) fx(x] («p(x1~x)dx=-2%f‘/-(xlx”—dx+

+ [1 (G 1oe 5= @)=,

—tatd

where 1<<a<b<{wo, %(x) is any function whose behaviour is suffi-
ciently regular, and the summation extends to all the non-trivial zeros
p=3-i7 of {(s) arranged in order of increasing | ¥ | (with repetitions
for multiplicity). Formally this equation is obtained by multiplying the

explicit formula for
_bx+40+9¢(x—0)
by (¥) = 2

by 7(x) and integrating term by term. The process is legitimate if y(x)
is merely integrable in the sense of Lebesgue. since the series occurring
in the formula for $,(x) is boundedly convergent in (2, #)7). In the
proposed application, however, % (¥) will be a function possessing a con-
tinuous derivative, and in this case we need only know the explicit
formula for

mxlzf«p(v)dv.
1

which is much easier to prove than the formula for ¢y(x) and involves
only absolutely and uniformly convergent series®). We multiply the for-
mula for ¢, (x) by ¥’ (%), integrate term by term from @ to & (by uniform
convergence), pérform an integration by parts in each term of the
resulting equation, and eliminate the ,terms at the limits” by means of
the explicit formulae for ¢,(a) and ¢, (8); the infinite series in (6) will
be absolutely convergent.
Now let

ll~‘|x| (1x]=1) ooy
l ‘ ' ‘W(y)::‘ “"“‘"" K
Lo x>0 0 2

") - Vorlesungen 11, 116 — 120; Prime numbers, 17 — 81,
8 Prime numbers, T3 — 74,

f(x)=

e _®

icm
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so that
1 7 :
@ t) = [#1e=dy.

—00

Let 7, 9, o be any numbers satisfying

®) T>e, ~1T-<2n§o>.

and write for brevity {7(v)=T§(T2). Then, by an application of (6}
and the substitution x=¢“, we have

ot L e

) f.&'\r[uu-—m)G[u)du=—~2~1—f frlp—w) et~y
P P B
o

-i—f fr(@—o)riwydue,
where
1 1 ¢
1) = e~ @O u [—=]log i —-= (0} }.
r()y=e (2 ogl ())

—em2% ¢

1

.1 3
In the last integral in (9) we have, since Em§win§7ém.‘

. ,_..i‘@,.; :
] +
\r(u)—-—ilog ~-1—} < Age P
. 2 [0} ) : o

where lgg v is log v if v>>1, and 0° otherwise: ‘Also =R =4y"
and £(0)=1, whence by the substitution uém—}— T-'y and kthe equa-

tion (7)
o Ty 89
f fr(@—o)du== f.w » Ed’y:zﬂ——ﬁ] ,
o —Ty

where 059<1. The integral in question is therefore

4

Siseref) ol
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o1 log T ( —*';—m.)
e ool

since 1/o <7 by (8). Here and in what follows O implies an absolute
constant and an inequality valid for all 7, 7, o satisfying (8). Thus (9)
gives

To

(e—@o Ty P&
[
(10) f.sv(y]o(m+!f)dy=—2ffwm f.sr(y]e T dy
T ° e =T
- -r-»1~(‘-)m
+wlog~1~—|—0(]°g T)—|~O(e 2 )
@ T L
3. Suppose first ®=%. Then p—0®=1i7, and we have
[ = 4
| = | f0dy <.
o =0 /) i

Riy)e T dy

Ty 2 ) T(VM 1.7-‘,') ' A T
| Fenzl Py a x
7 iy T | x|

with similar inequalities for the range (—oo,~~T1). Hence the ranges
of integration on the right of (10} may be extended to (—oo, oo) with

T;érﬁ_l)-*_o(% H!Z>r "Fli) O(

0( N
T |
and if the denominators p are then replaced by i 7 the error thereby

involved will be

logT),
T !

o(Z%Zmy) dy)=0(1).

Thus we infer from (10), in virtue of (7), that

®) See, e. g, Prime numbers, 10 (Theorem 25 b),

icm
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( 1.t 1 log? T
(11) ;—ﬁfswy)c(wr ;j)dy=—sf(m) +—Elog-‘;+0( <

—Ty

)—!-0(1).

where

o<l7=T

sinTu
1

=27 1322, 14

Now we satisfy the conditions (8) by taking (for any T2>¢)

21 = 0w =1, where

2
oo,

Thus (11) yvields in particular, since 0<c<A,

0 (1) = — S7) + log - +0() + 0 +0),
or, since Sr(4) is an odd function of &,

1 1 10
(12) Sr(:l:m)=.“:—2-—1027+0(1). )
Now let Il (7, q), for any positive integer ¢, be the class of all real
numbers U =2 with the property that

(13) \M‘<—1(;(mod 1) (n=1,2,,...N),

2%
i < T (enumerated with
where ;. Yz, ... 7~ are the 7 in the range 0<T“. ;
repetitiolns 2ior multiplicity), so that N= N(T) in the usual nc;)tatu;r;)
Let U be any number of W(7T,¢). Then for all real #, we have by (
N . . o
Yu \ sin (@ ¥n#) —sintfa s (lﬂP |<7)
2t —-) sin(fn - 1nt) —SinT B || o,
M :

|Sr(UA+u) — Sr(u)| = T

{14) =2

10) The bebaviour of ST (1) for small | u] could also be inlferred di‘;d:y :;oxzntl;le
definition and the known facts about the distribution of the 7" s (Ct, Vorlesung
139-140; Prime numbers, 98-99).
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Now combine (11). (14), (12), taking
N=r 0=Utr u=+r g=qgr=[log?T] +1,
and noting that, for all sufficiently large 7, T—1< 2t U+, and

Ut ©>>1, so that the conditions (8) are fulfilled and the lg-g term in
(11) is 0; we deduce that, for all 7>>4, and all U belonging to
(7, 97

i

1 ;
e I B U 2] lar> 20 L s,
7 2 T ’

2% \ i

—Tc

Sif)ce N()=0 and ¥ (0) =1, we may, by (5) and (7), replace G in
this formula by F if we change 4, to Ayt Ay + Ay = A,,. We thus
deduce (using again (7), 1(0) =1, & (y) = 0) that

Tz .

%0 {w (Uier—y—) 1dy>(~i— log -i——Am) [stay,

J /] 2 . .
LK

provided that 7 is large enough (say 7> A;; = 4;) to make the first

fe‘xctor on the right positive. From this it follows (again because

& (¥) = 0) that there must exist a and a #' such that

(15) U<u<<ULl2¢z, ._F(u]>~;_10gl_,4w
T

W) U-2e<e<U Fw> gl g,
T

To obtain (1) we appeal to Dirichlet's theorem on Diophantine

approximation. From this we infer that there exists a Ur of N (T, g7)
satisfying
(17) grV N = Up = g2V,

When T —oco, we have, using the relation 2aN(T) ~ T log T and (17),
1 .
log —~ log 7~ log N(T) ~ log log Ur,

and it follows at once from (15) and (16) that
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— — Fu S
o fW 1 s Fwo 1
u—rco log log u 2 w»oologlogu 2

These relations clearly imply (1).

. To obtain' Theorem A we appeal to a theorem of Bohl on Dio-
phantine approximation ). From this we infer the existence of a num-
ber L=L{i, ... . tnm; q1) = Lr >> 0 such that every interval
{ttg, 1o L) with 2,22 contains a number U belonging to 11 (7, g7, It
follows, by (15) and (16), that, if 7> A, and i, =2, the interval
(=27, y+ L--2¢%) contains a # and a ' satisfying

—Fl)> - log - — Au F#)> - log L — 4

from which we deduce, taking account of (4), that if u, is sufficiently
large, the' interval (e"2c, e®+:+%) contains an integezf n(==[e1] or
{e] 4 1) and an intéger 7’ satisfying S e

48)  —f0)> - log o — A, fl) > log - — Ay,

where A;, may be taken to be Aj;-=1, Now take T to bejihn'a‘tb"soliﬁe
constant so large that {in addition to 'the conditions élready;‘>im'p6rse'd)
the expression on the right ‘of the inequalities (18) is positive, . Then
elt+4is an absolute constant A;; >>1, and  the “interval : (%] 4;4X), “con-
tains for every x > A,, integers n and #’ for which “f{#) <0< f(n).
This clearly implies Theorem A in the form stated.

4. Next suppoée that > ; . Tn this case the relation (1), and

indeed more, follows by a familiar argument from a well known theo-
rem of Landau on Dirichlet's integrals '3), and I have nothing to add
to this, ‘

To obtain Theorem A in this case we return to (10).
partial integration,

Since, by

1) The theorem in question is substantially equivalent to the theorem that a fi-
mite sum of purely periodic continuous functions of a real variable is al_rho;t periodic,
and we might, alternatively, apply this theorem directly to S7(u). See Hi Bohr, ,Zur
Theorie der fast periodischen Funktionen, I", Acta Mathematica 45 (1925), 29-127
(119-121), .

%) Vorlesungen 11, 130—132; Prime numbers, 90—91,
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l (o=@ T3 ity
e - T
‘ Kye dy

the terms of I for which <0 form, for any fixed admissible values

(B0 T —Gen 7o FO1=)

e---——Alb e Ay,
< Aemet S v

=19

of T and 1, anp absolutely and uniformly convergent series for w =21,
in which each term tends to 0 when w—co. Hence the sum of these
terms tends to 0 when ®w—>co. In the terms for which f=0 we ex-
tend the ranges of integration to (—co, oo} as in § 3. and we obtain

=6 P Ty
j71<T

Tn .
1 (apofotL)ay— S g (1 o(Lg’ T)
27:[.\1(3/)0( —|—T)dy Y'(T)+ +ol),
—Tn

where 0 (1) denotes a function which, for any fixed admissible 7" and 1,
tends to 0 when ® —>oo; and in this we may replace G by F in virtue

of (5) since & > —12——

Now, assuming that © is attained, let © +iv,(y, >0) be the zeros
nearest to the real axis on the line c= 0, and let them be of order 7.
Take T to be an absolute constant such that the open segment o= 6,
—T<t< T contains the zeros ®-+iy, but no others. Then taking 7
to be a sufficiently large absolute constant, and writing @ 4 Iy,=p,=.
|polei®. we have

Ty
1 lgyp=—To (T _s '
27:[.@(_‘1])“(0)—{— 7)dy lp‘;]f(;)(Zcos[To‘ﬂ &) 49,

where |¥|<{1 for all sufficiently large ®. Taking 0 =0, and © = vy
where

mn+-8,
To ‘

Oy =

we deduce (substantially as in § 3) first that, for every sufficiently
large positive integer m, the interval (®m— %, 0ty --1) contains a # and
a U satisfying

o) sl
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2
and thence, with the help of (4), that, if A,G=e?+h, every interval

(%, 4,5 %) with sufficiently largde X contains an integer 7 and an integer
' satisfying

—f{n) >0, fn) >0,

This completes the proof,
King's College, Cambridge, 9 July, 1935.

(Received 12 July, 1935),
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