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gives, namely equations (6) or (7), are all right and only the unitary
condition (o) is unsatisfactory. Presumably, if one could make some more
thorough investigation of the connection between the classical contact
transformation theory and the present quantum transformation theory,
one would be able to see just where the classical symmetry property that
we are interested in gets lost and how it is to be restored*.

ON THE DIFFERENCE TT{X)-H(X) (I).

S. SKEWESf.

1. Let 77- (x) be the number of primes less than x, and let li(a;) denote
as usual the "logarithmic integral"

[' dx
Jo logx +"

The "prime number theorem" states that

lim 7r(x)/\i(x) = 1.

Numerical evidence suggests that 7r(a;)/li(a;) tends to unity from below,
so that

TT(X)—U(X)<0.

Littlewood§ has proved, however, that the number

actually changes sign infinitely often as x increases to infinity.
Ingham§ has pointed out that Littlewood's method provides, even

in principle, no definite number x0, such as a repeated exponential like
99*, before which P{x) has changed sign. My object is to obtain, assuming

* A paper by P. Jordan, Zeitschrift fiir Fhys., 80 (1933), 285, gives an interesting
attempt to improve the present quantum formalism by the introduction of non-associative
algebra. This work, though, does not seem to lead to any transformation theory having
analogies with the classical contact transformation theory and is therefore not the solution of
our problem.

f Received and read 15 June, 1933.

X More precisely, li(x) = lim (I ' + [ ).——.
1 1 ,-»•<> Vjo Ji+,/log«

§ See A. E. Ingham, "The distribution of prime numbers", Cambridge Math. Tracts,
No. 30, 1932.
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the truth of the Riemann hypothesis, such a number x0; that is to obtain
an x0 such that, for some z <ar0, the inequality P(x) > 0 is satisfied. I
prove, in fact, that

0
is~such a number.

The failure of Littlewood's method to furnish a definite number xQ

is traceable to a corresponding failure in the " Phragmen-Lindelof
theorem". The usual form of this theorem, modified to apply to
harmonic functions, is as follows.

THEOREM I. Let u(s) = u(a, t) satisfy the following conditions:

(i) u is a harmonic function of a and t in the open infinite strip
a<a<b;

(ii) u is continuous at every (finite) point of the lines a = a and a = b
bounding the strip;

(iii) u is majorized by a function M(t), i.e.

(B) u

everywhere in the open strip, where M(t) is independent of a and satisfies the
inequality

(1)

where K and & are constants, and # < 1. Suppose now that the inequality

(2) u<C

is satisfied at all points of the boundary of the strip. Then (2) is satisfied at
all interior points of the strip.

The condition (1) to be satisfied by the majorant M(t) can be made
slightly less restrictive, but not to the extent of taking & = 1.

The theorem may be restated as follows:

THEOREM II. Let u(s) satisfy (i), (ii), and (iii). Suppose now that
u(s0) > Cx at an interior point s0 of the strip. Then, if C2 < Cv the inequality
u> Czis satisfied at sofne point of the boundary of the strip.

Since C2 is an arbitrary number less than Cx, it follows, of course, that
[if u{s0) > (7-J the inequality u > Cx also is satisfied at some boundary
point. The two forms of statement are therefore equivalent, but the
form II must be adopted if we are to advance any further.
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Mr. Ingham's criticism may now be stated in more drastic form: the
usual proof of the theorem does not enable us to say definitely how soon, as \t\
increases, a boundary point must occur at which u > O2. This is the problem
which we have to solve.

The solution is in two stages. First, we show that the condition (B)
is sufficient to secure that u is majorized by the Poisson integral of the
function represented by the boundary values u(a, t) and u(b, t). Secondly,
a study of the Poisson integral enables us to obtain a value T, determined
by an explicit equation involving 80, CL, C2, and the function M(t), such
that the inequality u> C2 must be satisfied at some boundary point
with a t satisfying ji|_<JF. Incidentally, we need to assume only a
weakened form of the continuity condition (ii) (a fact which is of material
value when we come to apply the theorem), and a form of condition (iii)
which is in its way " best possible ". (See the statement of Theorem 4
below.)

2. In view of the greater familiarity of the Poisson integral for a cirole,
we first state and prove our theorems for the case of a circle (with one
critical point on the boundary corresponding to the point at infinity on
the strip).

THEOREM 1. Suppose that u(p, 6) satisfies the following conditions:

(i) u(p, 6) is harmonic in the unit circle p < 1;

(ii) lim u(p, 6) = U(6) almost everywhere;

(iii) u(p, 6) < M(0) for all P<1,

where M(6) is independent of p and integrable in the sense of Lebesgue.
Then U is integrable L, and

where P(p, t-B) = ^ ^ l ^ s J

i.e. u is majorized* by the Poisson integral of U.

Let r satisfy £(l-fp) < r < 1, say. Then

(1) 27ru(p, d) = £ u(r, t) P(r} p, t-O)dt,

* The hypothesis (iii) asserts only that u is bounded above by M(8). If it is replaced by
the hypothesis \u\ ^ M(d), we can change the signs of u and 17 in the conclusion of the
theorem, and can conclude that u is actually equal to the Poisson integral of U.
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where P(r, P, t-S) = ri_2rp

Since . P(r,p,«-»)

the integrand in (1) is less than or equal to 4M(8)(l — p)-1. Applying
Fatou's lemma to (1), we have

2TTU{P> 6) = fim I u{r, t)P(r, p, t-B)dt

lim {u(r, t) P(r, p, t-6)}dt

(2) = | ' U(t)P(P,t-d)dt,

which is the inequality desired. It follows incidentally, of course, that U
is integrable. For, by taking p = 0 in (2), we have

— oo.

Also, since U{t) ̂ M ( t ) , we have \U\^2M— U. Hence

T |l7|«ft<2fir Mdt-^ Udt< + oo.

THEOREM 2. Let C2 < Cv and let u(p, 6) satisfy the conditions (i),
(ii), and (iii) of Theorem 1. Suppose now that, for a point z0 = poe

<6t> inside
the unit circle, we have

u(z0) > Cv

Then there exists an a such that, for some 6 satisfying \ 6 \ > a, we have

U(d) > Cr

Also a may be either of ax or a2, where ax is the greatest root (less than IT) of the
equation

(3)

and a2 is the greatest root (less than IT) of the equation

(4)
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The equations (3) and (4) certainly possess each at least one positive root less
than TT. Finally, in the special cases when respectively (a) C2 ̂  0, and
(b) C2 ^ 0 and M(t) ^ 0 for all t, permissible values of a are a3 and a4

respectively, where a3 is the greatest root (less than TT) of

(5) p M(t)P(Po, 80-t)dt =

and a4 the greatest root (less than IT) of

(6) ^M(t)dt= 2rr(C1-C2)

0 / these values a4 ^ a3 ^ a2 ^ ax; 6i*£ a2 depends only on Cv C2, z0 and <Ae
function M(6)\ a3 depends only on Cx—C2, z0, and M(6)\ and a4 depends
only on C1—C2, pQ, and M(8).

Suppose that U(6) < C2 except in the range — a < 8 ^ a. Then

Also

f {C7(0-C2}^(Po, «o-O* ^ 2rr{u(zo)-C2}
j—n

by Theorem 1. Subtracting, we have

Fx(a) = j a {U(t)-c2}P(Po, eQ-t)dt>

If we define ^2(a)> -^3(a)> ^4(a) hy the formulae

F2(a) = j U _ a {Jf (0-C2} P(p0, 60-t)dt,

F3(a)=[ {M(t)}P(pOieo-t)dt,

we have J^2(a) ^ Fx(a) in any case, and ^ ( a ) ^ ^ ( a ) ^ -f2(
a) ^n *n e

special cases. Hence the hypothesis that U(6) ̂  C2 except in (—a, a)
implies that ^(a) > 2ir(C1—C2), where F is either of Fx or F2, or again,
in the special cases, either of F3 or FA. I t follows that, if a is such that

F(a) <&r(O1-Ci) ,

where F is one of Flt F2, or, in the special cases, .F3 or F4> then U(8) > C2

for some 8 satisfying |0| ^ a . Now ^ ( a ) is continuous in a, vanishes at
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a = 0, and is greater than 2TT(C1— C2) at a = TT, its value being not less
than 2TT{U(ZO)—C2}. The same things are true of F2, F3, and F±, their
values at a = 77- being still greater. It follows that the various equations
F(a) = 2TT{C1—C2) have each a solution in (0, TT), and the proof of the
theorem is completed*.

3. The theorems in the case of the strip are as follows.

THEOREM 3. Suppose that u(a, t) satisfies the following conditions :

(i) u(a, t) is harmonic in the strip 0 < a < TT ;

(ii) lim u{a, t) — U(0,1), lim u(a, r) = U(TT, t), both for almost all t;
or->ir

(iii) u(a, t) < Jf (t) for all values of a satisfying 0 < a < TT, where M{t)
is independent of a, and

f* M(t)e~^dt< oo.
J-00

Then Ue~w is integrable L over the boundary of the strip, and

u(a t)< _L f°° smaU(0,y)dy 1 f« sing U(TT, y)dy
^ ' ' "^ 2TT J.OO cosh(£—y)—cosa 2n J.^ cosh(£—y)+coso'

THEOREM 4. Let C2 < Clt and let u(cr, t) satisfy the conditions (i),
(ii), and (iii) of Theorem 3. Suppose now that, for a point JS0 — ao-\-ito

inside the strip, we have
u(ao> to) > Cv

Then there exists an a such thai, for some t satisfying 111 < a, we have one of

U(0,t)>C2, U(TT,t)>C2.

If ax is the least root of the equation, corresponding to equation (3) of
Theorem 2,

m 1 /T"11 ns i n o r°^( o > y )~c'2>d y

7r, y)-C2}dy _
-_00 cosh(«0-2/)+cos<T0

then a may have the value av The equations corresponding to (4), (5), and (6)
can be written down by analogy (and their least roots are to be taken).

* My original proof was somewhat more clumsy, and involved integration round a circle
interior to the unit circle. For this improved form of the proof I am indebted to Professor
Littlewood.
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The strip which we have taken has boundaries a = 0 and a = TT, but the
alterations in the formulae necessary to suit any other strip can be made
without difficulty.

.4. The formula actually used for our application to the problem of
P(x) is equation (1) in Theorem 4. We thereby avoid the complications
involved in determining precisely a majorizing function M(t); it is enough
to know that there is one, so that we can apply Theorem 3. We then
integrate (1) by parts, after which we are concerned only with the behaviour

of j Udt, not that of U, and this is more or less known. No further
difficulties of principle arise in the calculations, and what remains to be
done is the arithmetical development of ground already covered. This
is a matter of some intricacy, and it is perhaps capable of refinements.
What would be more important, it is possible that the restriction of the
Riemann hypothesis can be removed. I propose, therefore, to postpone
the details to a later paper; in the meantime, I have obtained a value
of x0 which, though possibly capable of improvement, undoubtedly
provides a solution to the original problem. The value of this x0 is

e«*'9 = 10loloS4, approximately.

HOMOGENEOUS SYSTEMS OF DIFFERENTIAL EQUATIONS
WITH ALMOST PERIODIC COEFFICIENTS

S. BOCHNER*.

Let the coefficients a^x), b^x) of the system of differential equations

(1) ^ > = l^{x)y.(x)+bAx) (/,= 1, 2, ..., m)

be a.p.f functions (in the sense of H. Bohr). Naturally, the question
arises, under what supplementary conditions the solutions are also a.p.
When the coefficients «,*„(#) are constant, fairly satisfactory conditions
are known J, relating not only to differential equations but also to other
functional equations. The case of variable coefficients a^x) seems
to be less favourable to results of a similarly definite type. However,
J. Favard§ has attacked the problem successfully, and his method, which

* Received and read 15 June, 1933.
f a.p. = almost periodic.
X S. Bochner, Math. Annalen, 104 (1931), 579-587.
§ J. Favard, Ada. Math., 51 (1928), 31-81.


