Define the “logarithmic integral” function \(\text{li}(x) = \int_2^x \frac{du}{\log u} \).

1. In this problem, we will explore various ways to write the error term in the prime number theorem for \(\pi(x) \).

(a) Using integration by parts, or otherwise, show that \(\text{li}(x) = \frac{x}{\log x} + \int_2^x \frac{du}{\log^2 u} - \frac{2}{\log 2} \).

(b) Show that \(\text{li}(x) = \frac{x}{\log x} + \frac{x}{\log^2 x} + \frac{2x}{\log^3 x} + O\left(\frac{x}{\log^4 x}\right) \).

(c) For any positive integer \(K \), prove that \(\pi(x) = \sum_{k=1}^{K} \frac{(k - 1)!x}{\log^k x} + O\left(\frac{x}{(\log x)^{K+1}}\right) \). You may assume equation (1) below to accomplish this task.

(d) For any fixed \(\alpha > 2 \), deduce that it is not the case that \(\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{\log^\alpha x}\right) \).

(a) Integration by parts (integrating 1 and differentiating \(1/\log u \)) yields

\[
\text{li}(x) = \frac{u}{\log u}\bigg|_2^x - \int_2^x u \left(-\frac{1}{u \log^2 u} \right) du = \frac{x}{\log x} - \frac{2}{\log 2} + \int_2^x \frac{du}{\log^2 u}.
\]

(b) We continue integrating by parts:

\[
\text{li}(x) = \frac{x}{\log x} + \int_2^x \frac{du}{\log^2 u} + O(1)
= \frac{x}{\log x} + \frac{u}{\log^2 u}\bigg|_2^x - \int_2^x u \left(-\frac{2}{u \log^3 u} \right) du + O(1)
= \frac{x}{\log x} + \frac{x}{\log^2 x} + \int_2^x \frac{2}{\log^3 u} du + O(1)
= \frac{x}{\log x} + \frac{x}{\log^2 x} + \frac{2u}{\log^3 u}\bigg|_2^x - \int_2^x u \left(-\frac{6}{u \log^4 u} \right) du + O(1)
= \frac{x}{\log x} + \frac{x}{\log^2 x} + \frac{2x}{\log^3 x} + \int_2^x \frac{6}{\log^4 u} du + O(1).
\]

As for the remaining integral, again we split at some \(2 \leq y \leq x \) and estimate each integral trivially:

\[
\int_2^x \frac{6}{\log^4 u} du = \int_2^y \frac{6}{\log^4 u} du + \int_y^x \frac{6}{\log^4 u} du \ll y + x \cdot \frac{1}{\log^4 y},
\]

and many choices of \(y \) make the right-hand side \(\ll x/\log^4 x \) (for example, \(y = \sqrt{x} \)).

Another way of estimating this last integral: noting that

\[
\frac{d}{dx} \left(\frac{x}{\log^4 x} \right) = \frac{1}{\log^4 x} - \frac{4}{\log^5 x} \geq \frac{1/2}{\log^4 x} \quad \text{for } \log x \geq 8,
\]
we may write (when \(x \geq e^8 \))

\[
\int_2^x \frac{6}{\log^4 u} \, du = \int_2^{e^8} \frac{6}{\log^4 u} \, du + \int_{e^8}^x \frac{6}{\log^4 u} \, du \leq \int_2^{e^8} \frac{6}{\log^4 u} \, du + 12 \int_{e^8}^x \left(\frac{1}{\log^4 u} - \frac{4}{\log^5 u} \right) \, du,
\]

and therefore

\[
\int_2^x \frac{6}{\log^4 u} \, du \ll 1 + \int_{e^8}^x \left(\frac{1}{\log^4 u} - \frac{4}{\log^5 u} \right) \, du = 1 + \frac{u}{\log^4 u} \bigg|_{e^8}^x \ll \frac{x}{\log^4 x}.
\]

(c) Using repeated integration by parts as in part (b), it is easy to prove by induction on \(K \) that

\[
\text{li}(x) = \sum_{k=1}^{K} \frac{(k-1)!x}{\log^k x} + \int_2^x \frac{K!}{(\log u)^{K+1}} + O_K(1).
\]

(Notice a slight subtlety of the notation: adding \(K \) quantities that are each \(O(1) \) yields a quantity that is \(O_K(1) \), but not necessarily \(O(1) \) uniformly in \(K \).) As in part (b), splitting the remaining integral at \(y = \sqrt{x} \), say, shows that the integral is \(\ll_K x/(\log x)^{K+1} \).

Therefore by problem #1(b), there exists an absolute constant \(c > 0 \) such that

\[
\pi(x) = \text{li}(x) + O(x \exp(-c\sqrt{\log x}))
\]

\[
= \sum_{k=1}^{K} \frac{(k-1)!x}{\log^k x} + O_K \left(\frac{x}{(\log x)^{K+1}} + x \exp(-c\sqrt{\log x}) \right)
\]

\[
= \sum_{k=1}^{K} \frac{(k-1)!x}{\log^k x} + O_K \left(\frac{x}{(\log x)^{K+1}} \right),
\]

since \((\log x)^{K+1} \ll_K \exp(c\sqrt{\log x}) \) for any \(K \). (No dependence on \(c \) is necessary since it is an absolute constant.)

[Note that it is tempting to extend this finite series to an infinite series, writing something like \(\text{li}(x) = \sum_{k=1}^{\infty} \frac{(k-1)!x}{\log^k x} \). However, the ratio test reveals that this series does not converge for any value of \(x \) ! This is an example of a divergent series, where any specific truncation provides a good approximation asymptotically even though the infinite series itself isn’t useful.]

(d) Suppose that the estimate did hold; then from part (c) with \(K = 2 \),

\[
\frac{x}{\log x} + O \left(\frac{x}{\log^2 x} \right) = \pi(x) = \frac{x}{\log x} + \frac{x}{\log^2 x} + O \left(\frac{x}{\log^3 x} \right);
\]

after rearranging this becomes

\[
\frac{x}{\log^2 x} = O \left(\frac{x}{\log^3 x} + \frac{x}{\log^2 x} \right)
\]

which is certainly false when \(\alpha > 2 \).

2. In this problem, we will give an asymptotic formula for \(\pi(x) \) with a better error term than what we saw in class.

(a) Show that

\[
\pi(x) - \text{li}(x) = \frac{\theta(x) - x}{\log x} + 2 + \int_2^x \frac{\theta(u) - u}{u \log^2 u} \, du.
\]
(b) Suppose that $c > 0$ is a constant such that $\theta(x) = x + O(x \exp(-c \sqrt{\log x}))$. Prove that

$$\pi(x) = \text{li}(x) + O(x \exp(-c \sqrt{\log x})).$$ \hfill (1)

(a) We can write $\pi(x) = \sum_{p \leq x} 1$ in terms of $\theta(x) = \sum_{p \leq x} \log p$ using Riemann–Stieltjes integrals:

$$\pi(x) = \int_{2-}^{x} \frac{1}{\log u} \, d\theta(u) = \int_{2-}^{x} \frac{1}{\log u} \, d(\theta(u) - u) + \int_{2-}^{x} \frac{1}{\log u} \, du$$

$$= \int_{2-}^{x} \frac{1}{\log u} \, d(\theta(u) - u) + \text{li}(x) - \text{li}(2-).$$

Rearranging terms, replacing $\text{li}(2-)$ by $\text{li}(2) = 0$ (due to the implicit limit in that lower endpoint that will soon be taken), and integrating by parts, we obtain

$$\pi(x) - \text{li}(x) = \frac{\theta(u) - u}{\log u} \bigg|_{2-}^{x} - \int_{2-}^{x} (\theta(u) - u) \frac{1}{\log u} \, du$$

$$= \frac{\theta(x) - x}{\log x} - 0 - 2 + \int_{2}^{x} (\theta(u) - u) \frac{1}{u \log^2 u} \, du.$$

(b) From part (a),

$$\pi(x) - \text{li}(x) \ll \frac{x \exp(-c \sqrt{\log x})}{\log x} + 1 + \int_{2}^{x} \frac{u \exp(-c \sqrt{\log u})}{u \log^2 u} \, du$$

$$\ll \frac{x \exp(-c \sqrt{\log x})}{\log x} + \int_{2}^{y} \frac{\exp(-c \sqrt{\log u})}{\log^2 u} \, du + \int_{y}^{x} \frac{\exp(-c \sqrt{\log u})}{\log^2 u} \, du$$

for any $2 \leq y \leq x$. Since the integrand is positive and decreasing for $u \geq 2$, it is also bounded, and so

$$\pi(x) - \text{li}(x) \ll x \exp(-c \sqrt{\log x}) + y + (x - y) \frac{\exp(-c \sqrt{\log y})}{\log^2 y}$$

$$\ll x \exp(-c \sqrt{\log x}) + y + x \exp(-c \sqrt{\log y}).$$

A reasonable choice for y seems to be $y = x \exp(-c \sqrt{\log x})$. With this choice,

$$\log y = \log x - c \sqrt{\log x} = (\log x) \left(1 + O\left(\frac{\sqrt{\log y}}{\log x}\right)\right);$$

since $\sqrt{1 + O(\varepsilon)} = 1 + O(\varepsilon)$ by the tangent line for $\sqrt{1+t}$ at $t = 0$,

$$\sqrt{\log y} = \sqrt{\log x} \left(1 + O\left(\frac{\sqrt{\log y}}{\log x}\right)\right) = \sqrt{\log x} + O(1).$$

We conclude that

$$\pi(x) - \text{li}(x) \ll x \exp(-c \sqrt{\log x}) + x \exp(-c(\sqrt{\log x} + O(1))) \ll x \exp(-c \sqrt{\log x}),$$

since $\exp(O(1)) \ll 1$.

Alternatively, we can use the “wishful thinking derivative” method we saw in #1(b): since

$$\frac{d}{dx}(x \exp(-c \sqrt{\log x})) = \exp(-c \sqrt{\log x}) - \frac{c \exp(-c \sqrt{\log x})}{2 \sqrt{\log x}} \gg x \exp(-c \sqrt{\log x}),$$
we have
\[
\int_2^x \frac{\exp(-c\sqrt{\log u})}{\log^2 u} \, du \ll \int_2^x \exp(-c\sqrt{\log u}) \, du
\]
\[
\ll \int_2^x \frac{d}{du}(u \exp(-c\sqrt{\log u})) \, du
\]
\[
= x \exp(-c\sqrt{\log x}) - 2 \exp(-c\sqrt{\log 2}) \ll x \exp(-c\sqrt{\log x}),
\]
with which the required estimate follows from equation (2).