1. Find a multiplicative function $f(n)$ such that $\tau(n) = (f * s)(n)$. Hint: Start computing the values of $f(1)$, $f(p)$, $f(p^2)$, $f(p^3)$, \ldots. There should be a nice way of writing $f(n)$ in terms of $\omega(n)$.

If $f(n)$ is multiplicative, then automatically $f(1) = 1$. Let’s compute $f(p^\alpha)$ for prime powers p^α. We have:

\[
\begin{align*}
2 &= \tau(p) = f(p)s(1) + f(1)s(p) = f(p) + 0 & \implies f(p) = 2 \\
3 &= \tau(p^2) = f(p^2)s(1) + f(p)s(p) + f(1)s(p^2) = f(p^2) + 1 & \implies f(p^2) = 2 \\
4 &= \tau(p^3) = f(p^3)s(1) + f(p^2)s(p) + f(p)s(p^2) + f(1)s(p^3) = f(p^3) + 2 & \implies f(p^3) = 2 \\
5 &= \tau(p^4) = f(p^4)s(1) + f(p^3)s(p) + f(p^2)s(p^2) + f(p)s(p^3) + f(1)s(p^4) \\
&= f(p^4) + 2 + 1 & \implies f(p^4) = 2,
\end{align*}
\]

which strongly suggests that $f(p^\alpha) = 2$ for all prime powers. Indeed, we can check that

\[
\left(\sum_{j=0}^{\alpha-1} 2s(p^j)\right) + 1s(p^\alpha) = 2\#\{0 \leq j \leq \alpha - 1: j \text{ is even}\} + \begin{cases} 1, & \text{if } \alpha \text{ is even} \\ 0, & \text{if } \alpha \text{ is odd} \end{cases} = \alpha + 1
\]

for all $\alpha \geq 1$, which proves the pattern found above. Since $f(n)$ is multiplicative, we conclude that

\[
f(n) = \prod_{p^\alpha \mid n} f(p^\alpha) = \prod_{p \mid n} 2 = 2^{\omega(n)}.
\]

(continued on next page)
2. Define $N(n)$ to be the number of solutions of the congruence $x^2 \equiv -1 \pmod n$. Recall that $N(n)$ is a multiplicative function, by the Chinese remainder theorem.

(a) Write down all the values of $N(p^\alpha)$.
(b) Define $G(n) = (N * s)(n)$. Find a formula for $G(n)$.
(c) Find a function $g(n)$ such that $G(n) = (g * 1)(n)$.
(d) Show that

$$G(n) = \# \{d \mid n: d \equiv 1 \pmod 4\} - \# \{d \mid n: d \equiv 3 \pmod 4\}.$$

(a) The answer depends on the congruence class of p modulo 4.

(i) When $p \equiv 1 \pmod 4$, we know that -1 is a quadratic residue modulo p, and so $x^2 \equiv -1 \pmod p$ has two solutions. It’s easy to check that these solutions are nonsingular, and so by Hensel’s lemma, there are two solutions modulo every power of p. In other words, $N(p^\alpha) = 2$ when $p \equiv 1 \pmod 4$.

(ii) When $p \equiv 3 \pmod 4$, we know that -1 is a quadratic nonresidue modulo p, and so $x^2 \equiv -1 \pmod p$ has no solutions. This implies that there are no solutions modulo any multiple of p either. In other words, $N(p^\alpha) = 0$ when $p \equiv 3 \pmod 4$.

(iii) When $p = 2$, we check by hand that $x^2 \equiv -1 \pmod 2$ has one solution and $x^2 \equiv -1 \pmod 4$ has no solutions. This implies that there are no solutions modulo any multiple of 4 either. In other words, $N(2) = 1$, while $N(2^\alpha) = 0$ for all $\alpha \geq 2$.

(b) The function $N(n)$ is multiplicative by the Chinese remainder theorem (since it counts the roots of the polynomial $x^2 + 1$ modulo n). Since $N(n)$ and $s(n)$ are both multiplicative, their convolution $G(n)$ must be multiplicative as well, and so it suffices to calculate $G(n)$ on prime powers.

(i) When $p \equiv 1 \pmod 4$, we have $(G * s)(p^\alpha) = \left(\sum_{j=0}^{\alpha-1} 2s(p^j) \right) + s(p^\alpha)$; we did this calculation in problem #1 above, and the answer is $\alpha + 1$. (In other words, on these primes N “acts like” $2^\omega(n)$, and so G “acts like” $2^\omega(n) * s(n) = \tau(n)$ on these primes.)

(ii) When $p \equiv 3 \pmod 4$, we have $(G * s)(p^\alpha) = \left(\sum_{j=0}^{\alpha-1} 0s(p^j) \right) + 1s(p^\alpha) = s(p^\alpha)$, which equals 1 if α is even and 0 if α is odd. (In other words, on these primes N “acts like” $\iota(n)$, and so G “acts like” $(\iota * s)(n) = s(n)$ on these primes.)

(iii) When $p = 2$, we have $(G * s)(p^\alpha) = \left(\sum_{j=0}^{\alpha-2} 0s(p^j) \right) + 1s(p^{\alpha-1}) + 1s(p^\alpha) = 1$, since exactly one of $\alpha - 1$ and α is even. (In other words, on these primes N “acts like” $\mu^2(n)$, and so by an example we did in class, G “acts like” $(\mu^2 * s)(n) = 1(n)$ on these primes.)

(continued on next page)
(c) By the Möbius inversion formula, \(G(n) = (g\ast 1)(n) \) if and only if \(g(n) = (G\ast \mu)(n) \). Since both \(G(n) \) and \(\mu(n) \) are multiplicative functions, so is \(g(n) \), and it suffices to calculate \(g(p^\alpha) \) for prime powers \(p^\alpha \). In all cases, note that

\[
(G \ast \mu)(p^\alpha) = \left(\sum_{j=0}^{\alpha-2} 0G(p^j) \right) + (-1)G(p^{\alpha-1}) + 1G(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}).
\]

(i) When \(p \equiv 1 \pmod{4} \), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) = (\alpha + 1) - \alpha = 1. \) (In other words, on these primes \(G \) “acts like” \(\tau \), and so \(g \) “acts like” \(\tau \ast \mu = (1 \ast 1) \ast \mu = 1 \ast 1 = 1 \) on these primes.)

(ii) When \(p \equiv 3 \pmod{4} \), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) \), which equals 1 if \(\alpha \) is even and \(-1 \) if \(\alpha \) is odd. (We haven’t seen this function before.)

(iii) When \(p = 2 \), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) = 1 - 1 = 0. \) (In other words, on these primes \(G \) “acts like” \(1(n) \), and so \(g \) “acts like” \((1 \ast \mu)(n) = \iota(n) \) on these primes.)

Note in particular that \(g(p^\alpha) \) equals 1 if \(p^\alpha \equiv 1 \pmod{4} \), equals \(-1 \) if \(p^\alpha \equiv 3 \pmod{4} \), and equals 0 if \(p^\alpha \) is even. We can now check that these descriptions play well with multiplicativity, so that \(g(n) \) itself equals 1 if \(n \equiv 1 \pmod{4} \), equals \(-1 \) if \(n \equiv 3 \pmod{4} \), and equals 0 if \(n \) is even.

(d) From part (c),

\[
G(n) = (g \ast 1)(n) = \sum_{d \mid n} g(d)
\]

\[
= \sum_{d \mid n} \begin{cases}
1, & \text{if } d \equiv 1 \pmod{4}, \\
-1, & \text{if } d \equiv 3 \pmod{4}, \\
0, & \text{if } d \text{ is even}
\end{cases}
\]

\[
= \#\{d \mid n: d \equiv 1 \pmod{4}\} - \#\{d \mid n: d \equiv 3 \pmod{4}\}
\]

as claimed. [One interesting side note: from its description in part (c), it’s obvious that \(G(n) \) takes only nonnegative values. That’s much less obvious from this last formula; indeed, this formula is the \(\pmod{4} \) analog of the function \(\tau_1(n) - \tau_2(n) \) from problem #2 on Homework 7.)

Okay, so why all these funny functions? Theorem 3.21 of Niven, Zuckerman, & Montgomery tells us that the number \(r(n) \) of proper representations of the integer \(n \) as a sum of two squares is exactly \(4N(n) \), where \(N(n) \) is as defined in problem #2. (Indeed, we already knew that \(r(n) \) is nonzero if and only if \(N(n) \) is nonzero, from Group Work #7.) It’s also pretty easy to show that the number \(R(n) \) of (not necessarily proper) representations of the integer \(n \) as a sum of two squares is equal to \((r \ast s)(n) = 4(N \ast s)(n) = 4G(n) \). (See the proof of Theorem 3.21; in brief, every representation of \(n \) as \(x^2 + y^2 \) corresponds to a proper representation of its divisor \(n/d^2 \) as \((x/d)^2 + (y/d)^2 \), where \(d = (x, y) \).) So we have proved a classical result: the number of representations of \(n \) as a sum of two squares is equal to the number of divisors of \(n \) that are congruent to 1 \(\pmod{4} \), minus the number of divisors of \(n \) that are congruent to 3 \(\pmod{4} \).