Recall the following notation that we’ve seen before:

- $e_0(n) = n^0 = 1$ is the constant function.
- $\tau(n)$ is the number of divisors of n.
- $\omega(n)$ is the number of distinct prime factors of n.
- $s(n)$ is the indicator function of perfect squares: $s(n) = 1$ if n is a perfect square, and $s(n) = 0$ otherwise. Recall that $s(n)$ is multiplicative.

1. Find a multiplicative function $f(n)$ such that $\tau(n) = (f * s)(n)$. **Hint:** Start computing the values of $f(1)$, $f(p)$, $f(p^2)$, $f(p^3)$, There should be a nice way of writing $f(n)$ in terms of $\omega(n)$.

If $f(n)$ is multiplicative, then automatically $f(1) = 1$. Let’s compute $f(p^\alpha)$ for prime powers p^α.

We have:

\[
\begin{align*}
2 &= \tau(p) = f(p)s(1) + f(1)s(p) = f(p) + 0 \\
3 &= \tau(p^2) = f(p^2)s(1) + f(p)s(p) + f(1)s(p^2) = f(p^2) + 1 \\
4 &= \tau(p^3) = f(p^3)s(1) + f(p^2)s(p) + f(p)s(p^2) + f(1)s(p^3) = f(p^3) + 2 \\
5 &= \tau(p^4) = f(p^4)s(1) + f(p^3)s(p) + f(p^2)s(p^2) + f(p)s(p^3) + f(1)s(p^4) \\
&\quad = f(p^4) + 2 + 1 \\
&\implies f(p^4) = 2,
\end{align*}
\]

which strongly suggests that $f(p^\alpha) = 2$ for all prime powers. Indeed, we can check that

\[
\left(\sum_{j=0}^{\alpha-1} 2s(p^j)\right) + 1s(p^\alpha) = 2\#\{0 \leq j \leq \alpha - 1: j \text{ is even}\} + \begin{cases} 1, & \text{if } \alpha \text{ is even} \\ 0, & \text{if } \alpha \text{ is odd} \end{cases} = \alpha + 1
\]

for all $\alpha \geq 1$, which proves the pattern found above. Since $f(n)$ is multiplicative, we conclude that

\[
f(n) = \prod_{p^\alpha \mid n} f(p^\alpha) = \prod_{p \mid n} 2 = 2^\omega(n).
\]

2. Define $N(n)$ to be the number of solutions of the congruence $x^2 \equiv -1 \pmod{n}$. Recall that $N(n)$ is a multiplicative function, by the Chinese remainder theorem.

(a) Write down all the values of $N(p^\alpha)$.
(b) Define $G(n) = (N * s)(n)$. Find a formula for $G(n)$.
(c) Find a function $g(n)$ such that $G(n) = (g * e_0)(n)$.
(d) Show that

\[
G(n) = \#\{d \mid n: d \equiv 1 \pmod{4}\} - \#\{d \mid n: d \equiv 3 \pmod{4}\}.
\]

(a) The answer depends on the congruence class of p modulo 4.

(i) When $p \equiv 1 \pmod{4}$, we know that -1 is a quadratic residue modulo p, and so $x^2 \equiv -1 \pmod{p}$ has two solutions. It’s easy to check that these solutions are nonsingular, and so by Hensel’s lemma, there are two solutions modulo every power of p. In other words, $N(p^\alpha) = 2$ when $p \equiv 1 \pmod{4}$.
(ii) When \(p \equiv 3 \) (mod 4), we know that \(-1\) is a quadratic nonresidue modulo \(p \), and so \(x^2 \equiv -1 \) (mod \(p \)) has no solutions. This implies that there are no solutions modulo any multiple of \(p \) either. In other words, \(N(p^\alpha) = 0 \) when \(p \equiv 3 \) (mod 4).

(iii) When \(p = 2 \), we check by hand that \(x^2 \equiv -1 \) (mod 2) has one solution and \(x^2 \equiv -1 \) (mod 4) has no solutions. This implies that there are no solutions modulo any multiple of 4 either. In other words, \(N(2) = 1 \), while \(N(2^\alpha) = 0 \) for all \(\alpha \geq 2 \).

(b) The function \(N(n) \) is multiplicative by the Chinese remainder theorem (since it counts the roots of the polynomial \(x^2 + 1 \) modulo \(n \)). Since \(N(n) \) and \(s(n) \) are both multiplicative, their convolution \(G \) must be multiplicative as well, and so it suffices to calculate \(G(n) \) on prime powers.

(i) When \(p \equiv 1 \) (mod 4), we have \((G * s)(p^\alpha) = (\sum_{j=0}^{\alpha-1} 2s(p^j)) + 1s(p^\alpha)\); we did this calculation in problem #1 above, and the answer is \(\alpha + 1 \). (In other words, on these primes \(N \) “acts like” \(2\omega(n) \), and so \(G \) “acts like” \(2\omega(n) * s(n) = \tau(n) \) on these primes.)

(ii) When \(p \equiv 3 \) (mod 4), we have \((G * s)(p^\alpha) = (\sum_{j=0}^{\alpha-1} 0s(p^j)) + 1s(p^\alpha) = s(p^\alpha)\), which equals 1 if \(\alpha \) is even and 0 if \(\alpha \) is odd. (In other words, on these primes \(N \) “acts like” \(\iota(n) \), and so \(G \) “acts like” \((\iota * s)(n) = s(n) \) on these primes.)

(iii) When \(p = 2 \), we have \((G * s)(p^\alpha) = (\sum_{j=0}^{\alpha-2} 0s(p^j)) + 1s(p^\alpha-1) + 1s(p^\alpha) = 1 \), since exactly one of \(\alpha - 1 \) and \(\alpha \) is even. (In other words, on these primes \(N \) “acts like” \(\mu^2(n) \), and so by an example we did in class, \(G \) “acts like” \((\mu^2 * s)(n) = e_0(n) \) on these primes.)

(c) By the Möbius inversion formula, \(G(n) = (g * e_0)(n) \) if and only if \(g(n) = (G * \mu)(n) \). Since both \(G(n) \) and \(\mu(n) \) are multiplicative functions, so is \(g(n) \), and it suffices to calculate \(g(p^\alpha) \) for prime powers \(p^\alpha \). In all cases, note that

\[
(G * \mu)(p^\alpha) = \left(\sum_{j=0}^{\alpha-2} 0G(p^j)\right) + (-1)G(p^{\alpha-1}) + 1G(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}).
\]

(i) When \(p \equiv 1 \) (mod 4), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) = (\alpha + 1) - \alpha = 1 \). (In other words, on these primes \(G \) “acts like” \(\tau \), and so \(g \) “acts like” \(\tau * \mu = (e_0 * e_0) * \mu = e_0 * (e_0 * \mu) = e_0 * \iota = e_0 \) on these primes.)

(ii) When \(p \equiv 3 \) (mod 4), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) \), which equals 1 if \(\alpha \) is even and \(-1 \) if \(\alpha \) is odd. (We haven’t seen this function before.)

(iii) When \(p = 2 \), we have \(g(p^\alpha) = G(p^\alpha) - G(p^{\alpha-1}) = 1 - 1 = 0 \). (In other words, on these primes \(G \) “acts like” \(e_0(n) \), and so \(g \) “acts like” \((e_0 * \mu)(n) = \iota(n) \) on these primes.)

Note in particular that \(g(p^\alpha) \) equals 1 if \(p^\alpha \equiv 1 \) (mod 4), equals \(-1 \) if \(p^\alpha \equiv 3 \) (mod 4), and equals 0 if \(p^\alpha \) is even. We can now check that these descriptions play well with multiplicativity, so that \(g(n) \) itself equals 1 if \(n \equiv 1 \) (mod 4), equals \(-1 \) if \(n \equiv 3 \) (mod 4), and equals 0 if \(n \) is even.
(d) From part (c),

$$G(n) = (g \ast e_0)(n) = \sum_{d \mid n} g(d)$$

$$= \sum_{d \mid n} \begin{cases}
1, & \text{if } d \equiv 1 \pmod{4}, \\
-1, & \text{if } d \equiv 3 \pmod{4}, \\
1, & \text{if } d \text{ is even}
\end{cases}$$

$$= \#\{d \mid n: d \equiv 1 \pmod{4}\} - \#\{d \mid n: d \equiv 3 \pmod{4}\}$$

as claimed. [One interesting side note: from its description in part (c), it’s obvious that $G(n)$ takes only nonnegative values. That’s much less obvious from this last formula; indeed, this formula is the (mod 4) analog of the function $\tau_1(n) - \tau_2(n)$ from problem #2 on Homework 7.)

Okay, so why all these funny functions? Theorem 3.21 of Niven, Zuckerman, & Montgomery tells us that the number $r(n)$ of proper representations of the integer n as a sum of two squares is exactly $4N(n)$, where $N(n)$ is as defined in problem #2. (Indeed, we already knew that $r(n)$ is nonzero if and only if $N(n)$ is nonzero, from Group Work #7.) It’s also pretty easy to show that the number $R(n)$ of (not necessarily proper) representations of the integer n as a sum of two squares is equal to $(r \ast s)(n) = 4(N \ast s)(n) = 4G(n)$. (See the proof of Theorem 3.21; in brief, every representation of n as $x^2 + y^2$ corresponds to a proper representation of its divisor n/d^2 as $(x/d)^2 + (y/d)^2$, where $d = (x, y)$.) So we have proved a classical result: the number of representations of n as a sum of two squares is equal to the number of divisors of n that are congruent to 1 (mod 4), minus the number of divisors of n that are congruent to 3 (mod 4).