Math 331-Homework \#6

due at the beginning of class Monday, April 2, 2007
Reality-check problems. Not to write up; just ensure that you know how to do them.
I. Verify the following binomial coefficient identites hold for all complex numbers x and all integers k :
(UP) $(x-k)\binom{x}{k}=x\binom{x-1}{k}$
(DOWN) $k\binom{x}{k}=(x-k+1)\binom{x}{k-1}$
(CHARM) $k\binom{x}{k}=x\binom{x-1}{k-1}$
II. Wilf, p. 188, \#3
III. Wilf, p. 190, \#7

Homework problems. To write up and hand in.
I. Prove using the WZ-method that

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{k!(n-k)!(k+x)}=\frac{1}{x(x+1)(x+2) \cdots(x+n)}
$$

for all nonnegative integers n and all $x \in \mathbb{C} \backslash\{0,-1, \ldots,-n\}$. It might help make the calculations easier to write things in terms of binomial coefficients, but it's up to you. (A spooky voice in your mind says: " $R(n, k)=(x+k-1) /(n+1) \ldots$.")
II. Let $u(x)=\frac{1-\sqrt{1-4 x}}{2 x}-1$.
(a) Show that $u(x)$ is the unique function satisfying $u(0)=0$ that is implicitly defined by $u=x(1+u)^{2}$.
(b) Use the Lagrange Inversion Formula to prove equation (2.5.16) on page 54 of Wilf. (Remark: equation (2.5.10) on the previous page is a special case of this.)
III. (a) Suppose that $u(x)$ is a function defined implicitly by $u=x \phi(u)$, where ϕ is a power series with $\phi(0) \neq 0$ (but not necessarily $\phi(0)=1$). By making a suitable change of variable and appealing to the Lagrange Inversion Formula as stated in class (or otherwise), prove that we still have

$$
\left[x^{n}\right] u(x)=\frac{1}{n}\left[t^{n-1}\right] \phi(t)^{n} .
$$

(b) Define A_{m} to be the coefficient of $\left[t^{m-1}\right]$ in the power series expansion of

$$
\frac{(t+1)^{2 m}}{(t+2)^{m}}
$$

By working the Lagrange Inversion Formula backwards, show that

$$
A_{m}=m\left[x^{m}\right] u(x)
$$

for a function u implicitly defined by $u=x \phi(u)$ for a suitable ϕ. Solve that equation to get an explicit formula for $u(x)$, and by recognizing it as a function with a known power series (or otherwise), prove that

$$
A_{m}=\frac{m}{4^{m}}\binom{2 m}{m}
$$

IV. For this problem define $A(x)=6 /\left(2 x^{2}-5 x+2\right)$ and $B(x)=A(x)^{3}$.
(a) Show that $P P\left(B ; \frac{1}{2}\right)$, the principal part of $B(x)$ around the pole at $x=\frac{1}{2}$, equals

$$
-\frac{64 / 3}{(x-1 / 2)}-\frac{16}{(x-1 / 2)^{2}}-\frac{8}{(x-1 / 2)^{3}} .
$$

(b) Define a_{n} to be the coefficients of the power series for $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ (with the usual convention that $a_{n}=0$ for $n<0$). Calculate an asymptotic formula for

$$
b_{n}=\sum_{j} \sum_{k} a_{j} a_{k} a_{n-j-k}
$$

with an error term that tends to zero as n tends to infinity.
V. Wilf, p. 188, \#2
VI. Wilf, p. 188, \#4. Note that γ_{n} is the number of ways of getting a total of n when you roll n "dice", each of which has an equal chance of yielding 0, 1 , or 2.

Another interesting interpretation is that if two people repeatedly play rock-paper-scissors against each other, each person getting a point for every win and nobody getting a point for a draw, then $\gamma_{n} / 3^{n}$ is the probability that the two players have the same number of points after n games.
VII. Wilf, p. 191, \#10. Also, use the answer to part (d) to deduce that the average number of fixed points of an involution of n letters is $(1+o(1)) \sqrt{n}$.
VIII. (a) Let $T(x)=\sum_{n \geq 1} T_{n} x^{n} / n$! be the exponential generating function of the sequence $\left\{T_{n}\right\}$ which counts the number of rooted labeled trees with n vertices. What is the radius of convergence of $T(x)$?
(b) Find an asymptotic formula for the quantity A_{m} defined in problem III(b). Your answer should turn out to be $A_{m} \sim \alpha m^{\beta}$ for some real numbers α and β.

Bonus problem.

Click on the link to Gosper's Algorithm on the course web page. Figure out and explain to me how step 3 is accomplished.

