Math 331-Homework \#5

due at the beginning of class Monday, March 19, 2007
Reality-check problems. Not to write up; just ensure that you know how to do them.
I. Verify that $\exp _{\mid \alpha}(0)$ equals 1 if $\alpha \geq 0$ and 0 if $\alpha<0$.
II. Verify that for any function $f(x)$,

$$
\frac{d}{d x}\left(\exp _{\mid \alpha}(f(x))\right)=f^{\prime}(x) \exp _{\mid \alpha-1}(f(x))
$$

III. Wilf, p. 158, \#4
IV. Wilf, p. 159, \#10. Note: this isn't an easy problem, but it's an important example. I've just called it a Reality Check problem to indicate that you don't have to write it up and turn it in. But I suggest you do work through it!

Homework problems. To write up and hand in.
I. Wilf, p. 161, \#14
II. Wilf, p. 158, \#7. Note that the sieve formula for e_{k} mentioned in the problem is equation (4.2.7).
III. (a) Let N_{r} and E_{t} have their usual meanings from Section 4.2 of Wilf. We've seen that the average number of properties an object has is given by the simple formula N_{1} / N_{0}. Show that the variance of the number of properties is given by $\left(N_{1}+2 N_{2}\right) / N_{0}-\left(N_{1} / N_{0}\right)^{2}$.
(b) Using part (a), re-derive the formula for the variance of the number of k-cycles in permutations of $\{1, \ldots, n\}$.
IV. In a given sieve-method problem, the set of properties under consideration is a finite set P. Suppose we are given a positive number A, as well as other positive numbers c_{p} for every $p \in P$. Suppose also that the number $N(\supseteq S)$ of objects possessing all the properties in S is given by the formula $N(\supseteq S)=A \prod_{p \in S} c_{p}$. Prove that the "exactly" generating function $E(x)$ is given by

$$
E(x)=A \prod_{p \in P}\left(c_{p} x+1-c_{p}\right) .
$$

V. Let p_{1}, \ldots, p_{m} be distinct prime numbers, and let B be a positive integer that is a multiple of all m of them. For any positive integer n, let $w(n)$ be the number of p_{1}, \ldots, p_{m} that divide n. By phrasing this as a sieve method problem, answer the following:
(a) What is the average value of $w(n)$ as n ranges over $\{1, \ldots, B\}$?
(b) What is the variance of $w(n)$ as n ranges over $\{1, \ldots, B\}$?
(c) Using $E(x)$, find a formula for the number of n in the range $\{1, \ldots, B\}$ that are not divisible by any of the primes p_{1}, \ldots, p_{m}.
VI. Wilf, p. 158, \#5
VII. Let h and w be positive integers (think "height" and "width"). Use generating functions, in the manner of Example 4 of Section 4.2 of Wilf, to prove:
(a) For every positive integer j, the number of ways to place j non-attacking rooks on an $h \times w$ chessboard is

$$
\binom{h}{j}\binom{w}{j} j!
$$

(Hint: consider the $h \times w$ chessboard as a subset of a square chessboard of side length $\max \{h, w\}$. In this case, the "exactly" numbers are extremely easy to calculate!)
(b) For every integer $n \geq \max \{h, w\}$, the probability that a randomly chosen permutation π of $\{1, \ldots, n\}$ satisfies

$$
\pi(1)>h, \pi(2)>h, \ldots, \text { and } \pi(w)>h
$$

is given by the formula

$$
\sum_{k=0}^{n}(-1)^{k}\binom{h}{k}\binom{w}{k} /\binom{n}{k} .
$$

VIII. In this problem (unlike the previous one), permutation probabilities refer to the limiting probability as n goes to infinity, as in Section 4.7. Show that:
(a) the probability that a permutation has no 2-cycles or 6-cycles is the same as the probability that a permutation has no 3-cycles, 4-cycles, or 12-cycles;
(b) the probability that a permutation's shortest cycle is the only cycle of that size in the permutation is

$$
\sum_{n=1}^{\infty} \frac{1}{n e^{H_{n}}}
$$

where $H_{n}=\sum_{k=1}^{n} 1 / k$ is the nth harmonic number;
(c) for every positive integer k, it is more probable that a permutation has exactly $k(k+1)$-cycles than it is that a permutation has exactly $(k+1) k$-cycles.

