Math 331–Homework #3

due at the beginning of class Monday, February 12, 2007

Reality-check problems. Not to write up; just ensure that you know how to do them.

- I. Wilf, p. 66, #11
- II. Show that the various parts of Wilf's "definition" of lim sup on page 46 are all consequences of the definition of lim sup given in class.
- III. If $\lim a_n$ exists, show that $\limsup a_n = \lim a_n$.
- IV. Let A(x) be the ordinary power series generating function for a sequence $\{a_n\}$, and let E(x) be the exponential power series generating function for the same sequence.
 - (a) If A(x) has a nonzero radius of convergence, show that the radius of convergence of E(x) is $+\infty$.
 - (b) If *E*(*x*) has a finite radius of convergence, show that the radius of convergence of *A*(*x*) is 0.

V. For any positive integer *n*, show that
$$\sum_{k_1} \cdots \sum_{k_n} x^{|k_1| + \cdots + |k_n|} = \left(\frac{1+x}{1-x}\right)^n$$
.

VI. Wilf, p. 104, #3 and 6

Homework problems. To write up and hand in.

I. Using generating functions, compute the following numbers, where F_n denotes the Fibonacci sequence:

(a)
$$\sum_{n=0}^{\infty} \frac{F_n}{2^n}$$
 (b) $\sum_{n=0}^{\infty} \frac{F_n^2}{3^n}$
(c) $\sum_{n=0}^{\infty} \frac{F_n^2}{2^n}$ (be suspicious!) (d) $\sum_{n=0}^{\infty} \frac{F_n}{n!}$

II. Recall that cos *x* is the exponential power series generating function for the periodic sequence

$$\{1, 0, -1, 0, 1, 0, -1, 0, \dots\} = \begin{cases} (-1)^{n/2}, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd,} \end{cases}$$

while $\sin x$ is the exponential power series generating function for the periodic sequence

$$\{0, 1, 0, -1, 0, 1, 0, -1, \dots\} = \begin{cases} 0, & \text{if } n \text{ is even,} \\ (-1)^{(n-1)/2}, & \text{if } n \text{ is odd.} \end{cases}$$

Using exponential power series generating functions, prove $\cos^2 x + \sin^2 x = 1$.

(continued on next page)

- III. Use the method of Wilf, p. 37, Example 4 to find a formula for the sum $\sum_{j=0}^{n} j^{3}$.
- IV. The definition (2.4.1) of the radius of convergence of a series is reminiscent of the "root test" for convergence of a series. This problem discusses the "ratio test" version.
 - (a) Show that if $\lim |a_{n+1}/a_n|$ exists, then $\lim |a_n|^{1/n}$ also exists and $\lim |a_n|^{1/n} = \lim |a_{n+1}/a_n|$. Conclude that in this case, the radius of convergence *R* of the power series $\sum_{n=1}^{\infty} a_n x^n$ satisfies

$$R = \frac{1}{\lim |a_{n+1}/a_n|}.$$

(b) Give an example of a sequence $\{a_n\}$ of positive real numbers such that the quantity $\limsup (a_{n+1}/a_n)$ exists, but $\limsup a_n^{1/n} \neq \limsup (a_{n+1}/a_n)$. Conclude that we *cannot* in general say

$$R = \frac{1}{\limsup |a_{n+1}/a_n|}.$$

- V. For positive integers *m* and *n*, let f(m, n) denote the number of *m*-tuples of integers $(x_1, x_2, ..., x_m)$ such that $|x_1| + |x_2| + \cdots + |x_m| \le n$.
 - (a) Explain why it's sensible to define f(0, n) = 1 and f(m, 0) = 1 for all nonnegative integers *m* and *n*.
 - (b) Show that

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m,n) x^m y^n = \frac{1}{1 - x - y - xy}$$

- (c) Using part (b), show that f(m, n) = f(n, m).
- VI. For a positive integer *n*, define s(n) to be the number of subsets of $\{1, 2, ..., n\}$ whose size is a multiple of 3. For example, s(4) = 5 due to the five subsets $\{\}$, $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{1, 3, 4\}$, and $\{2, 3, 4\}$ of $\{1, 2, 3, 4\}$. We might expect that about a third of the 2^n subsets have size that is a multiple of three. Prove that in fact,

$$s(n) = \frac{2^{n}}{3} + \begin{cases} 2/3, & \text{if } n \text{ is of the form } 6k, \\ 1/3, & \text{if } n \text{ is of the form } 6k \pm 1, \\ -1/3, & \text{if } n \text{ is of the form } 6k \pm 2, \\ -2/3, & \text{if } n \text{ is of the form } 6k + 3. \end{cases}$$

VII. Wilf, p. 104, #7

VIII. Wilf, p. 105, #15(a). Hint: prove it directly in the case where there's only one nonempty deck; then merge and flood.

(continued on next page)

- IX. BONUS PROBLEM. A group of *n* children is being signed up to form *k* song-anddance teams. Each child will be signed up as either a singer or a dancer on that child's team. Each team must have at least one singer and at least one dancer. We're interested in the number h(n,k) of different ways these song-and-dance teams can be formed.
 - (a) Describe this problem as one of cards, decks, and hands, with the number of children in each song-and-dance team being the weight of that card. Show that the *n*th deck has $d_n = 2^n 2$ cards for $n \ge 1$ (with $d_0 = 0$).
 - (b) Show that the hand enumerator generating function $\mathcal{H}(x, y)$ is given by

$$\mathcal{H}(x,y)=e^{y(e^{2x}-2e^x+1)}.$$

Conclude that

$$h(n,k) = n! [x^n] \left(\frac{(e^{2x} - 2e^x + 1)^k}{k!} \right).$$
(*)

(c) Count h(n, k) another way, as follows: first imagine the n children all deciding whether they will be singers or dancers. Then for each set of decisions, split the singers into k groups and the dancers into k groups; then pair off the k singer groups with the k dancer groups. Using this approach, justify why

$$h(n,k) = k! \sum_{j} \binom{n}{j} \begin{Bmatrix} j \\ k \end{Bmatrix} \begin{Bmatrix} n-j \\ k \end{Bmatrix}.$$

(d) Using problem VIII(b) on Homework #2 and part (c) above, conclude that

$${h(n,k)}_{n=0}^{\infty} \xleftarrow{egf} \frac{(e^x-1)^{2k}}{k!}$$

How is this related to equation (*) above?