Math 331-Homework \#3

due at the beginning of class Monday, February 12, 2007
Reality-check problems. Not to write up; just ensure that you know how to do them.
I. Wilf, p. 66, \#11
II. Show that the various parts of Wilf's "definition" of lim sup on page 46 are all consequences of the definition of lim sup given in class.
III. If $\lim a_{n}$ exists, show that $\lim \sup a_{n}=\lim a_{n}$.
IV. Let $A(x)$ be the ordinary power series generating function for a sequence $\left\{a_{n}\right\}$, and let $E(x)$ be the exponential power series generating function for the same sequence.
(a) If $A(x)$ has a nonzero radius of convergence, show that the radius of convergence of $E(x)$ is $+\infty$.
(b) If $E(x)$ has a finite radius of convergence, show that the radius of convergence of $A(x)$ is 0 .
V. For any positive integer n, show that $\sum_{k_{1}} \cdots \sum_{k_{n}} x^{\left|k_{1}\right|+\cdots+\left|k_{n}\right|}=\left(\frac{1+x}{1-x}\right)^{n}$.
VI. Wilf, p. 104, \#3 and 6

Homework problems. To write up and hand in.
I. Using generating functions, compute the following numbers, where F_{n} denotes the Fibonacci sequence:
(a) $\sum_{n=0}^{\infty} \frac{F_{n}}{2^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{F_{n}^{2}}{3^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{F_{n}^{2}}{2^{n}}$ (be suspicious!)
(d) $\sum_{n=0}^{\infty} \frac{F_{n}}{n!}$
II. Recall that $\cos x$ is the exponential power series generating function for the periodic sequence

$$
\{1,0,-1,0,1,0,-1,0, \ldots\}= \begin{cases}(-1)^{n / 2}, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

while $\sin x$ is the exponential power series generating function for the periodic sequence

$$
\{0,1,0,-1,0,1,0,-1, \ldots\}= \begin{cases}0, & \text { if } n \text { is even } \\ (-1)^{(n-1) / 2}, & \text { if } n \text { is odd }\end{cases}
$$

Using exponential power series generating functions, prove $\cos ^{2} x+\sin ^{2} x=1$.
III. Use the method of Wilf, p. 37, Example 4 to find a formula for the sum $\sum_{j=0}^{n} j^{3}$.
IV. The definition (2.4.1) of the radius of convergence of a series is reminiscent of the "root test" for convergence of a series. This problem discusses the "ratio test" version.
(a) Show that if $\lim \left|a_{n+1} / a_{n}\right|$ exists, then $\lim \left|a_{n}\right|^{1 / n}$ also exists and $\lim \left|a_{n}\right|^{1 / n}=$ $\lim \left|a_{n+1} / a_{n}\right|$. Conclude that in this case, the radius of convergence R of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ satisfies

$$
R=\frac{1}{\lim \left|a_{n+1} / a_{n}\right|}
$$

(b) Give an example of a sequence $\left\{a_{n}\right\}$ of positive real numbers such that the quantity $\lim \sup \left(a_{n+1} / a_{n}\right)$ exists, but $\lim \sup a_{n}^{1 / n} \neq \lim \sup \left(a_{n+1} / a_{n}\right)$. Conclude that we cannot in general say

$$
R=\frac{1}{\lim \sup \left|a_{n+1} / a_{n}\right|}
$$

V. For positive integers m and n, let $f(m, n)$ denote the number of m-tuples of integers $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{m}\right| \leq n$.
(a) Explain why it's sensible to define $f(0, n)=1$ and $f(m, 0)=1$ for all nonnegative integers m and n.
(b) Show that

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n) x^{m} y^{n}=\frac{1}{1-x-y-x y}
$$

(c) Using part (b), show that $f(m, n)=f(n, m)$.
VI. For a positive integer n, define $s(n)$ to be the number of subsets of $\{1,2, \ldots, n\}$ whose size is a multiple of 3 . For example, $s(4)=5$ due to the five subsets $\}$, $\{1,2,3\},\{1,2,4\},\{1,3,4\}$, and $\{2,3,4\}$ of $\{1,2,3,4\}$. We might expect that about a third of the 2^{n} subsets have size that is a multiple of three. Prove that in fact,

$$
s(n)=\frac{2^{n}}{3}+ \begin{cases}2 / 3, & \text { if } n \text { is of the form } 6 k \\ 1 / 3, & \text { if } n \text { is of the form } 6 k \pm 1 \\ -1 / 3, & \text { if } n \text { is of the form } 6 k \pm 2 \\ -2 / 3, & \text { if } n \text { is of the form } 6 k+3\end{cases}
$$

VII. Wilf, p. 104, \#7
VIII. Wilf, p. 105, \#15(a). Hint: prove it directly in the case where there's only one nonempty deck; then merge and flood.
IX. BONUS PROBLEM. A group of n children is being signed up to form k song-anddance teams. Each child will be signed up as either a singer or a dancer on that child's team. Each team must have at least one singer and at least one dancer. We're interested in the number $h(n, k)$ of different ways these song-and-dance teams can be formed.
(a) Describe this problem as one of cards, decks, and hands, with the number of children in each song-and-dance team being the weight of that card. Show that the nth deck has $d_{n}=2^{n}-2$ cards for $n \geq 1$ (with $d_{0}=0$).
(b) Show that the hand enumerator generating function $\mathcal{H}(x, y)$ is given by

$$
\mathcal{H}(x, y)=e^{y\left(e^{2 x}-2 e^{x}+1\right)}
$$

Conclude that

$$
\begin{equation*}
h(n, k)=n!\left[x^{n}\right]\left(\frac{\left(e^{2 x}-2 e^{x}+1\right)^{k}}{k!}\right) \tag{*}
\end{equation*}
$$

(c) Count $h(n, k)$ another way, as follows: first imagine the n children all deciding whether they will be singers or dancers. Then for each set of decisions, split the singers into k groups and the dancers into k groups; then pair off the k singer groups with the k dancer groups. Using this approach, justify why

$$
h(n, k)=k!\sum_{j}\binom{n}{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}\left\{\begin{array}{c}
n-j \\
k
\end{array}\right\} .
$$

(d) Using problem VIII(b) on Homework \#2 and part (c) above, conclude that

$$
\{h(n, k)\}_{n=0}^{\infty} \stackrel{e g f}{\longleftrightarrow} \frac{\left(e^{x}-1\right)^{2 k}}{k!}
$$

How is this related to equation $(*)$ above?

