Math 331-Homework \#1

due at the beginning of class Monday, January 15, 2007
Reality-check problems. Not to write up; just ensure that you know how to do them.
I. Wilf, p. 24, \#1.1 and 1.3
II. Wilf, p. 25, \#1.5 (a), (d), and (e)
III. Wilf, p. 25, \#1.6 (b) and (c)
IV. Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ are power series. Show that $\left[x^{n}\right](f(x) g(x))=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Homework problems. To write up and hand in.
I. Wilf, p. 25, \#1.9, except you don't have to write up the "and therefore that" part of the problem.
II. Wilf, p. 26, \#1.11
III. Wilf, p. 27, \#1.15
IV. Wilf, p. 27, \#1.16
V. Wilf, p. 27, \#1.17
VI. Wilf, p. 27, \#1.18 (a) and (c). In part (c), explicitly include the values of n and k for which $f(n, k)$ is defined, and the values of n and k for which the recurrence is valid. If you wish to define $f(n, k)$ to be 0 for certain n and k, you're welcome to do so-just be explicit. Note: it's more standard to call the numbers $f(n, k)$ Eulerian numbers, rather than Euler numbers.
VII. Using the values of the first several Eulerian numbers given at http://mathworld.wolfram.com/EulerianNumber.html, calculate all values of $f(8, k)$, where f is defined in the previous problem.
VIII. (a) Show that $\binom{-1 / 2}{n}=\left(-\frac{1}{4}\right)^{n}\binom{2 n}{n}$ for all integers n.
(b) Using part (a) and (1.5.5) in Wilf, show that $\frac{1}{\sqrt{1-4 x}}$ can be written as $\sum_{n}\binom{2 n}{n} x^{n}$.
(c) Using part (b) and reality-check IV, prove that $\sum_{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=4^{n}$.
IX. Consider two strangely-labeled six-sided dice: the red one has the numbers 1,2 , $2,3,3$, and 4 on its faces, while the blue one has the numbers $1,3,4,5,6$, and 8 on its faces. Using generating functions, show that when rolling this pair of dice and adding the values, the various results occur exactly as often as they would with a pair of normal six-sided dice.

