Absolutely abnormal numbers

Greg Martin
University of British Columbia

The Mathematical Interests of Peter Borwein
Simon Fraser University
May 15, 2008
Outline

1. Introduction
2. Constructing our number
3. Proving irrationality and abnormality
4. Generalizing the construction
Simply normal numbers

A real number is simply normal to the base b if each digit occurs in its b-ary expansion with the expected asymptotic frequency.

$$N(\alpha; b, a, x) = \#\{1 \leq n \leq x : \text{the } n\text{th digit in the base-}b\text{ expansion of } \alpha \text{ is } a\}$$

Definition

α is simply normal to the base b if for each $0 \leq a < b$,

$$\lim_{x \to \infty} \frac{N(\alpha; b, a, x)}{x} = \frac{1}{b}.$$

b-adic rational numbers α (those for which $b^j \alpha$ is an integer for some j) have two b-ary expansions; but α is not simply normal for either one.
Simply normal numbers

A real number is simply normal to the base b if each digit occurs in its b-ary expansion with the expected asymptotic frequency.

$$N(\alpha; b, a, x) = \# \{1 \leq n \leq x : \text{the } n\text{th digit in the base-}b \text{ expansion of } \alpha \text{ is } a\}$$

Definition

α is simply normal to the base b if for each $0 \leq a < b$,

$$\lim_{x \to \infty} \frac{N(\alpha; b, a, x)}{x} = \frac{1}{b}.$$

b-adic rational numbers α (those for which $b^j \alpha$ is an integer for some j) have two b-ary expansions; but α is not simply normal for either one.
Simply normal numbers

A real number is simply normal to the base b if each digit occurs in its b-ary expansion with the expected asymptotic frequency.

$$N(\alpha; b, a, x) = \# \{1 \leq n \leq x : \text{the } n\text{th digit in the base}-b \text{ expansion of } \alpha \text{ is } a\}$$

Definition

α is **simply normal to the base** b if for each $0 \leq a < b$,

$$\lim_{x \to \infty} \frac{N(\alpha; b, a, x)}{x} = \frac{1}{b}.$$

b-adic rational numbers α (those for which $b^j \alpha$ is an integer for some j) have two b-ary expansions; but α is not simply normal for either one.
Simply normal numbers

A real number is simply normal to the base b if each digit occurs in its b-ary expansion with the expected asymptotic frequency.

$$N(\alpha; b, a, x) = \#\{1 \leq n \leq x: \text{the } n\text{th digit in the base-}b \text{ expansion of } \alpha \text{ is } a\}$$

Definition

α is simply normal to the base b if for each $0 \leq a < b$,

$$\lim_{x \to \infty} \frac{N(\alpha; b, a, x)}{x} = \frac{1}{b}.$$

- b-adic rational numbers α (those for which $b^j\alpha$ is an integer for some j) have two b-ary expansions; but α is not simply normal for either one.
Normal numbers

Definition

A number is **normal to the base** b if it is simply normal to each of the bases b, b^2, b^3, \ldots.

Equivalently:

For any finite string $a_1a_2\ldots a_\ell$ of base-b digits, the limiting frequency of occurrences of this string in the b-ary expansion of α exists and equals $1/b^\ell$.

- The set of numbers normal to any base b has full Lebesgue measure, and thus the same is true of the set of absolutely normal numbers.
- Proving specific numbers normal is notoriously hard.
Normal numbers

Definition

A number is **normal to the base** b if it is simply normal to each of the bases b, b^2, b^3, \ldots.

Equivalently:

For any finite string $a_1 a_2 \ldots a_\ell$ of base-b digits, the limiting frequency of occurrences of this string in the b-ary expansion of α exists and equals $1/b^\ell$.

- The set of numbers normal to any base b has full Lebesgue measure, and thus the same is true of the set of absolutely normal numbers.
- Proving specific numbers normal is notoriously hard.
Normal numbers

Definition

A number is normal to the base b if it is simply normal to each of the bases b, b^2, b^3, \ldots.

Equivalently:

For any finite string $a_1a_2\ldots a_\ell$ of base-b digits, the limiting frequency of occurrences of this string in the b-ary expansion of α exists and equals $1/b^\ell$.

- The set of numbers normal to any base b has full Lebesgue measure, and thus the same is true of the set of absolutely normal numbers.
- Proving specific numbers normal is notoriously hard.
Normal numbers

Definition
A number is normal to the base b if it is simply normal to each of the bases b, b^2, b^3, \ldots.

Equivalently:
For any finite string $a_1a_2\ldots a_\ell$ of base-b digits, the limiting frequency of occurrences of this string in the b-ary expansion of α exists and equals $1/b^\ell$.

- The set of numbers normal to any base b has full Lebesgue measure, and thus the same is true of the set of absolutely normal numbers.
- Proving specific numbers normal is notoriously hard.
How hard?

Champernowne’s number

0.1234567891011121314151617181920212223242526...

is normal to the base 10 (and hence to bases 100, 1000, etc.).

Theorem (Stoneham, 1973; Bailey–Crandall 2002)

\[
\sum_{n=1}^{\infty} \frac{1}{c^n b^n} \text{ is normal to the base } b \text{ if } \gcd(b, c) = 1.
\]

The bad news

No real number has ever been proved normal to two multiplicatively independent bases.

But they all are... (pretty pictures)
How hard?

Champernowne’s number

0.1234567891011121314151617181920212223242526…
is normal to the base 10 (and hence to bases 100, 1000, etc.).

Theorem (Stoneham, 1973; Bailey–Crandall 2002)

\[\sum_{n=1}^{\infty} \frac{1}{c^n b^c n} \text{ is normal to the base } b \text{ if } \gcd(b, c) = 1. \]

The bad news

No real number has ever been proved normal to two multiplicatively independent bases.

But they all are… (pretty pictures)
How hard?

Champernowne’s number

0.1234567891011121314151617181920212223242526…
is normal to the base 10 (and hence to bases 100, 1000, etc.).

Theorem (Stoneham, 1973; Bailey–Crandall 2002)

\[\sum_{n=1}^{\infty} \frac{1}{c^n b^{cn}} \] \textit{is normal to the base} \(b \) \textit{if} \(\gcd(b, c) = 1 \).

The bad news

No real number has ever been proved normal to two multiplicatively independent bases.

But they all are… (pretty pictures)
How hard?

Champernowne’s number

0.1234567891011121314151617181920212223242526…
is normal to the base 10 (and hence to bases 100, 1000, etc.).

Theorem (Stoneham, 1973; Bailey–Crandall 2002)

\[\sum_{n=1}^{\infty} \frac{1}{c^n b^{cn}} \] is normal to the base \(b \) if \(\gcd(b, c) = 1 \).

The bad news

No real number has ever been proved normal to two multiplicatively independent bases.

But they all are… … (pretty pictures)
Champernowne’s number

0.1234567891011121314151617181920212223242526\ldots
is normal to the base 10 (and hence to bases 100, 1000, etc.).

Theorem (Stoneham, 1973; Bailey–Crandall 2002)

\[
\sum_{n=1}^{\infty} \frac{1}{c^n b^{c^n}} \text{ is normal to the base } b \text{ if } \gcd(b, c) = 1.
\]

The bad news

No real number has ever been proved normal to two multiplicatively independent bases.

But they all are. . . . (pretty pictures)
Absolute abnormality

Definition

A number is **absolutely abnormal** if it is not normal to any base $b \geq 2$.

- Every rational number is absolutely abnormal.
- The set of absolutely abnormal numbers (while Lebesgue measure 0) is uncountable and dense.

Well, then:

Can we write down an irrational, absolutely abnormal number?
Absolute abnormality

Definition

A number is absolutely abnormal if it is not normal to any base $b \geq 2$.

- Every rational number is absolutely abnormal.
- The set of absolutely abnormal numbers (while Lebesgue measure 0) is uncountable and dense.

Well, then:
Can we write down an irrational, absolutely abnormal number?
Absolute abnormality

Definition
A number is absolutely abnormal if it is not normal to any base \(b \geq 2 \).

- Every rational number is absolutely abnormal.
- The set of absolutely abnormal numbers (while Lebesgue measure 0) is uncountable and dense.

Well, then:
Can we write down an irrational, absolutely abnormal number?
Absolute abnormality

Definition
A number is absolutely abnormal if it is not normal to any base $b \geq 2$.

- Every rational number is absolutely abnormal.
- The set of absolutely abnormal numbers (while Lebesgue measure 0) is uncountable and dense.

Well, then:
Can we write down an irrational, absolutely abnormal number?
A sequence of integers

Definition (recursive)

\[d_2 = 2^2, \quad d_3 = 3^2, \quad d_4 = 4^3, \quad d_5 = 5^{16}, \]

\[d_6 = 6^{30,517,578,125}, \quad \ldots \]

\[d_j = j^{d_{j-1}/(j-1)} \quad (j \geq 3). \]

Explicitly:

\[d_4 = 4^{3^2-1}, \quad d_5 = 5^{4(3^2-1)-1}, \quad d_6 = 6^{5(4(3^2-1)-1)-1}, \quad \ldots \]

and in general,

\[d_j = j^{(j-2)(j-3)(\ldots(4(3^2-1)-1)\ldots)-1)-1}. \]
A sequence of integers

Definition (recursive)

- $d_2 = 2^2$, $d_3 = 3^2$, $d_4 = 4^3$, $d_5 = 5^{16}$,
- $d_6 = 6^{30,517,578,125}$, ...
- $d_j = j^{d_{j-1}/(j-1)}$ (if $j \geq 3$).

Explicitly:

\[
d_4 = 4^{3^2-1}, \quad d_5 = 5^{4(3^2-1)-1}, \quad d_6 = 6^{5(4(3^2-1)-1)-1}, \quad \ldots
\]

and in general,

\[
d_j = j^{(j-2)(j-3)\cdots(4(3^2-1)-1)\cdots-1)-1}.
\]
A sequence of integers

Definition (recursive)

- \(d_2 = 2^2 \), \(d_3 = 3^2 \), \(d_4 = 4^3 \), \(d_5 = 5^{16} \),
- \(d_6 = 6^{30,517,578,125} \), \ldots
- \(d_j = j^{d_{j-1}/(j-1)} \) \((j \geq 3) \).

Explicitly:

\[
d_4 = 4^{3^2-1}, \quad d_5 = 5^{4(3^2-1)-1}, \quad d_6 = 6^{5(4(3^2-1)-1)-1}, \quad \ldots
\]

and in general,

\[
d_j = j^{(j-2)(j-3)(\ldots(4(3^2-1)-1-1)\ldots-1)-1}.
\]
A sequence of integers

Definition (recursive)

- $d_2 = 2^2$, $d_3 = 3^2$, $d_4 = 4^3$, $d_5 = 5^{16}$,
- $d_6 = 6^{30,517,578,125}$, ...
- $d_j = j^{d_{j-1}/(j-1)}$ ($j \geq 3$).

Explicitly:

- $d_4 = 4^{3^{2-1}}$, $d_5 = 5^{4^{(3^{2-1}-1)}}$, $d_6 = 6^{5^{(4^{(3^{2-1}-1)}-1)}}$, ...

and in general,

$$d_j = j^{(j-2)^{(j-3)^{\cdots^{(4^{(3^{2-1}-1)}-1)^{\cdots}}}}-1}_{-1}.$$
A sequence of integers

Definition (recursive)

- $d_2 = 2^2$, $d_3 = 3^2$, $d_4 = 4^3$, $d_5 = 5^{16}$,
- $d_6 = 6^{30,517,578,125}$, \ldots
- $d_j = j^{d_{j-1} / (j-1)} \quad (j \geq 3)$.

Explicitly:

\[
d_4 = 4^{32-1}, \quad d_5 = 5^{4(32-1)-1}, \quad d_6 = 6^{5(4(32-1)-1)-1}, \ldots
\]

and in general,

\[
d_j = j^{(j-2)(j-3)(\ldots(4(32-1)-1)\ldots)-1}-1).
\]
constructing our number

Proving irrationality and abnormality

Generalizing the construction

(a typesetting nightmare)

If you think it’s easy to get:

$$d_j = j^{(j-1)} \left((j-2) \left((j-3) \left(\ldots \left(4^{(3^j-1)-1} \right) \ldots \right) -1 \right) -1 \right)$$

try not to get:

$$d_j = j^{(j-1)} \left((j-2) \left((j-3) \left(\ldots \left(4^{(3^j-1)-1} \right) \ldots \right) -1 \right) -1 \right)$$

Absolutely abnormal numbers

Greg Martin
(a typesetting nightmare)

If you think it’s easy to get:

\[d_j = j^{(j-1)} \left((j-2) \left((j-3) \left(\cdots (4^{(3^2-1)-1}) \cdots \right) - 1 \right) - 1 \right) \]

try not to get:

\[d_j = j^{(j-1)} \left((j-2) \left((j-3) \left(\cdots (4^{(3^2-1)-1}) \cdots \right) - 1 \right) - 1 \right) \]
A sequence of rational numbers

Definition

\[\alpha_k = \prod_{j=2}^{k} \left(1 - \frac{1}{d_j} \right) \]

- \(\alpha_2 = \frac{3}{4}, \alpha_3 = \frac{2}{3}, \alpha_4 = \frac{21}{32}, \alpha_5 = \frac{100,135,803,222}{152,587,890,625}, \ldots \)

Some nice cancellation

It seems that the denominator of \(\alpha_k \) should contain powers of 2, 3, \ldots, \(k \). But in the listed terms, the denominator contains only powers of \(k \); in other words, \(\alpha_k \) is a \(k \)-adic fraction.

- \(4 = 2^2, \ 3 = 3^1, \ 32 \mid 64 = 4^3, \ 152,587,890,625 = 5^{16} \)
A sequence of rational numbers

Definition

\[\alpha_k = \prod_{j=2}^{k} \left(1 - \frac{1}{d_j} \right) \]

- \(\alpha_2 = \frac{3}{4}, \alpha_3 = \frac{2}{3}, \alpha_4 = \frac{21}{32}, \alpha_5 = \frac{100,135,803,222}{152,587,890,625}, \ldots \)

Some nice cancellation

It seems that the denominator of \(\alpha_k \) should contain powers of 2, 3, \ldots, \(k \). But in the listed terms, the denominator contains only powers of \(k \); in other words, \(\alpha_k \) is a \(k \)-adic fraction.

- \(4 = 2^2, 3 = 3^1, 32 \mid 64 = 4^3, 152,587,890,625 = 5^{16} \)
A sequence of rational numbers

Definition

\[\alpha_k = \prod_{j=2}^{k} \left(1 - \frac{1}{d_j} \right) \]

- \(\alpha_2 = \frac{3}{4}, \alpha_3 = \frac{2}{3}, \alpha_4 = \frac{21}{32}, \alpha_5 = \frac{100,135,803,222}{152,587,890,625}, \ldots \)

Some nice cancellation

It seems that the denominator of \(\alpha_k \) should contain powers of 2, 3, \ldots, \(k \). But in the listed terms, the denominator contains only powers of \(k \); in other words, \(\alpha_k \) is a \(k \)-adic fraction.

- \(4 = 2^2, 3 = 3^1, 32 \mid 64 = 4^3, 152,587,890,625 = 5^{16} \)
A sequence of rational numbers

Definition

\[\alpha_k = \prod_{j=2}^{k} \left(1 - \frac{1}{d_j} \right) \]

- \(\alpha_2 = \frac{3}{4}, \alpha_3 = \frac{2}{3}, \alpha_4 = \frac{21}{32}, \alpha_5 = \frac{100,135,803,222}{152,587,890,625}, \ldots \)

Some nice cancellation

It seems that the denominator of \(\alpha_k \) should contain powers of 2, 3, \ldots, \(k \). But in the listed terms, the denominator contains only powers of \(k \); in other words, \(\alpha_k \) is a \(k \)-adic fraction.

- \(4 = 2^2, 3 = 3^1, 32 \mid 64 = 4^3, 152,587,890,625 = 5^{16} \)
A little elementary number theory

Fun fact (for you to prove if you get bored)

\[(k + 1)^{km} - 1 \text{ is divisible by } k^{m+1} \text{ for any integers } k, m \geq 1.\]

Lemma

\[(k + 1)^{d_k/k} - 1 \text{ is divisible by } d_k \text{ for any integer } k \geq 2.\]

Proof.

Since \(d_k = k^{d_{k-1}/(k-1)} \),

\[(k + 1)^{d_k/k} - 1 = (k + 1)^{k^{d_{k-1}/(k-1)-1}} - 1;\]

apply the fun fact with \(m = d_{k-1}/(k - 1) - 1.\)
A little elementary number theory

Fun fact (for you to prove if you get bored)

\[(k + 1)^{km} - 1 \text{ is divisible by } k^{m+1} \text{ for any integers } k, m \geq 1.\]

Lemma

\[(k + 1)^{d_k/k} - 1 \text{ is divisible by } d_k \text{ for any integer } k \geq 2.\]

Proof.

Since \(d_k = k^{d_{k-1}/(k-1)},\)

\[(k + 1)^{d_k/k} - 1 = (k + 1)^{k^{d_{k-1}/(k-1)-1}} - 1;\]

apply the fun fact with \(m = d_{k-1}/(k - 1) - 1.\)
A little elementary number theory

Fun fact (for you to prove if you get bored)

\((k + 1)^{km} - 1\) is divisible by \(k^{m+1}\) for any integers \(k, m \geq 1\).

Lemma

\((k + 1)^{d_k/k} - 1\) is divisible by \(d_k\) for any integer \(k \geq 2\).

Proof.

Since \(d_k = k^{d_{k-1}/(k-1)}\),

\[(k + 1)^{d_k/k} - 1 = (k + 1)^{k^{d_{k-1}/(k-1)-1}} - 1;\]

apply the fun fact with \(m = d_{k-1}/(k - 1) - 1\).
The cause of the cancellation

Lemma

$d_k \alpha_k$ is an integer for each $k \geq 2$. In particular, α_k is a k-adic fraction (since d_k is a power of k).

Proof by induction on k.

\[
d_{k+1} \alpha_{k+1} = d_{k+1} \prod_{j=2}^{k+1} \left(1 - \frac{1}{d_j} \right) = (d_{k+1} - 1) \alpha_k
\]

\[
= \left((k + 1)^{d_k/k} - 1 \right) \alpha_k = \left(\frac{(k + 1)^{d_k/k} - 1}{d_k} \right) d_k \alpha_k
\]

The fraction is an integer by the lemma on the last slide; so if $d_k \alpha_k$ is an integer, then $d_{k+1} \alpha_{k+1}$ is also an integer.
The cause of the cancellation

Lemma

d_k \alpha_k is an integer for each k ≥ 2. In particular, \alpha_k is a k-adic fraction (since d_k is a power of k).

Proof by induction on k.

d_{k+1} \alpha_{k+1} = d_{k+1} \prod_{j=2}^{k+1} \left(1 - \frac{1}{d_j} \right) = (d_{k+1} - 1) \alpha_k

= ((k + 1)^{d_k/k} - 1) \alpha_k = \left(\frac{(k + 1)^{d_k/k} - 1}{d_k} \right) d_k \alpha_k

The fraction is an integer by the lemma on the last slide; so if d_k \alpha_k is an integer, then d_{k+1} \alpha_{k+1} is also an integer.
The cause of the cancellation

Lemma

\(d_k \alpha_k\) is an integer for each \(k \geq 2\). In particular, \(\alpha_k\) is a \(k\)-adic fraction (since \(d_k\) is a power of \(k\)).

Proof by induction on \(k\).

\[
d_{k+1} \alpha_{k+1} = d_{k+1} \prod_{j=2}^{k+1} \left(1 - \frac{1}{d_j}\right) = (d_{k+1} - 1) \alpha_k
\]

\[
= \left((k + 1)^{d_k/k} - 1\right) \alpha_k = \left(\frac{(k + 1)^{d_k/k} - 1}{d_k}\right) d_k \alpha_k
\]

The fraction is an integer by the lemma on the last slide; so if \(d_k \alpha_k\) is an integer, then \(d_{k+1} \alpha_{k+1}\) is also an integer.
The cause of the cancellation

Lemma

$d_k \alpha_k$ is an integer for each $k \geq 2$. In particular, α_k is a k-adic fraction (since d_k is a power of k).

Proof by induction on k.

\[
d_{k+1} \alpha_{k+1} = d_{k+1} \prod_{j=2}^{k+1} \left(1 - \frac{1}{d_j}\right) = (d_{k+1} - 1) \alpha_k
\]

\[
= ((k + 1)^{d_k/k} - 1) \alpha_k = \left(\frac{(k + 1)^{d_k/k} - 1}{d_k}\right) d_k \alpha_k
\]

The fraction is an integer by the lemma on the last slide; so if $d_k \alpha_k$ is an integer, then $d_{k+1} \alpha_{k+1}$ is also an integer.
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \]

- In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha \):

\[\ldots 0.6562499999956992 \]

Compare \(\alpha \) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \]
\[\alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j}\right) \]

In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha\):

\[\alpha_{23} = 0.6562499999956992 \]

Compare \(\alpha\) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \quad \alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \]

- In Peter’s honour, I’ve memorized the first **twenty-three billion** decimal places of \(\alpha \):

\[\alpha = 0.656249999995699199999 \ldots 999998528404201690728 \ldots \]

23,747,291,559 nines

Compare \(\alpha \) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \quad \alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j}\right) \]

- In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha \):

\[\alpha = 0.656249999995699199999 \ldots 999998528404201690728 \ldots \]

23,747,291,559 nines

easy exercise

Compare \(\alpha \) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \quad \alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j}\right) \]

- In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha\):
 \[\alpha = 0.656249999995699199999 \ldots 999998528404201690728 \ldots \]
 23,747,291,559 nines

harder exercise

Compare \(\alpha\) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \quad \alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \]

In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha \):

\[\alpha = 0.656249999995699199999 \ldots 999998528404201690728 \ldots \]

23,747,291,559 nines

Compare \(\alpha \) to its partial products

\[\alpha_4 = \frac{21}{32} = 0.65625 \quad \alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999956992 \]
Our candidate

Definition

\[\alpha = \lim_{k \to \infty} \alpha_k = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \]

- In Peter’s honour, I’ve memorized the first twenty-three billion decimal places of \(\alpha \):

\[\alpha = 0.65624999995699199999 \ldots 999998528404201690728 \ldots \]

23,747,291,559 nines

Compare \(\alpha \) to its partial products

- \(\alpha_4 = \frac{21}{32} = 0.65625 \)
- \(\alpha_5 = \frac{100,135,803,222}{152,587,890,625} = 0.6562499999569992 \)
α is irrational

Definition (reminder)

- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha = \prod_{j=2}^{\infty} \left(1 - 1/d_j \right) \)

\{d_j\} grows ridiculously quickly

One can show that \(d_{j+1} > d_j^{d_j-1} \) for all \(j \geq 5 \).

\[
\alpha_k - \alpha = \alpha_k \left(1 - \prod_{j=k+1}^{\infty} \left(1 - \frac{1}{d_j} \right) \right) < \alpha_k \sum_{j=k+1}^{\infty} \frac{1}{d_j} < \frac{2}{d_{k+1}} < \frac{2}{d_k^{d_{k-1}}}
\]

- These are rational approximations of \(\alpha \) by fractions with denominators \(d_k \).
- Since \(d_{k-1} \to \infty \), the number \(\alpha \) is a Liouville number, hence irrational (transcendental even).
\(\alpha \) is irrational

Definition (reminder)

- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \)

\{d_j\} grows ridiculously quickly

One can show that \(d_{j+1} > d_j^{d_{j-1}} \) for all \(j \geq 5 \).

\[
\alpha_k - \alpha = \alpha_k \left(1 - \prod_{j=k+1}^{\infty} \left(1 - \frac{1}{d_j} \right) \right) < \alpha_k \sum_{j=k+1}^{\infty} \frac{1}{d_j} < \frac{2}{d_{k+1}} < \frac{2}{d_k^{d_k-1}}
\]

- These are rational approximations of \(\alpha \) by fractions with denominators \(d_k \).
- Since \(d_{k-1} \to \infty \), the number \(\alpha \) is a Liouville number, hence irrational (transcendental even).
\[\alpha \text{ is irrational} \]

Definition (reminder)
- \[d_j = j^{d_{j-1}/(j-1)} \]
- \[\alpha = \prod_{j=2}^{\infty} \left(1 - \frac{1}{d_j} \right) \]

\{d_j\} grows ridiculously quickly

One can show that \(d_{j+1} > d_j^{d_j-1} \) for all \(j \geq 5 \).

\[
\alpha_k - \alpha = \alpha_k \left(1 - \prod_{j=k+1}^{\infty} \left(1 - \frac{1}{d_j} \right) \right) < \alpha_k \sum_{j=k+1}^{\infty} \frac{1}{d_j} < \frac{2}{d_{k+1}} < \frac{2}{d_k^{d_k-1}}
\]

- These are rational approximations of \(\alpha \) by fractions with denominators \(d_k \).
- Since \(d_{k-1} \to \infty \), the number \(\alpha \) is a Liouville number, hence irrational (transcendental even).
\(\alpha \) is irrational

Definition (reminder)

- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha = \prod_{j=2}^{\infty} (1 - 1/d_j) \)

\(\{d_j\} \) grows ridiculously quickly

One can show that \(d_{j+1} > d_j^{d_{j-1}} \) for all \(j \geq 5 \).

\[
\alpha_k - \alpha = \alpha_k \left(1 - \prod_{j=k+1}^{\infty} \left(1 - \frac{1}{d_j}\right) \right) < \alpha_k \sum_{j=k+1}^{\infty} \frac{1}{d_j} < \frac{2}{d_{k+1}} < \frac{2}{d_k^{d_{k-1}}}
\]

- These are rational approximations of \(\alpha \) by fractions with denominators \(d_k \).
- Since \(d_{k-1} \to \infty \), the number \(\alpha \) is a Liouville number, hence irrational (transcendental even).
\(\alpha \) is irrational

Definition (reminder)
- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha = \prod_{j=2}^{\infty} (1 - 1/d_j) \)

\{d_j\} grows ridiculously quickly

One can show that \(d_{j+1} > d_j^{d_{j-1}} \) for all \(j \geq 5 \).

\[
\alpha_k - \alpha = \alpha_k \left(1 - \prod_{j=k+1}^{\infty} \left(1 - \frac{1}{d_j}\right)\right) < \alpha_k \sum_{j=k+1}^{\infty} \frac{1}{d_j} < \frac{2}{d_{k+1}} < \frac{2}{d_k^{d_{k-1}}}
\]

- These are rational approximations of \(\alpha \) by fractions with denominators \(d_k \).
- Since \(d_{k-1} \to \infty \), the number \(\alpha \) is a Liouville number, hence irrational (transcendental even).
Abnormal for one moment at least

Illustrating example: \(b = 4 \)

- \(\alpha_4 = (0.222)_{\text{base } 4} \)
- \(\alpha_4 - \alpha = (0.000000000000000000102322210110 \ldots)_{\text{base } 4} \)
- \(\alpha = (0.221333333333333333231011123223 \ldots)_{\text{base } 4} \)

- \(\alpha_b - \alpha < 2/d_b^{d_b-1} \) for all \(b \geq 5 \)
- \(\alpha_b \) terminates in base \(b \), after \(D \) digits say
- \(\alpha \) is a tiny bit less than \(\alpha_b \): the difference starts with about \(d_b-1D \) base-\(b \) digits equaling 0
- So \(\alpha \) has a long string of base-\(b \) digits equaling \(b - 1 \).

How long?

Among the first \(d_b-1D \) base-\(b \) digits of \(\alpha \), at least a proportion \(1 - C/d_b-1 \) of them equal \(b - 1 \) (for some absolute constant \(C \)).
Abnormal for one moment at least

Illustrating example: $b = 4$

- $\alpha_4 = (0.222)_{\text{base } 4}$
- $\alpha_4 - \alpha = (0.00000000000000000102322210110 \ldots)_{\text{base } 4}$
- $\alpha = (0.22133333333333333231011123223 \ldots)_{\text{base } 4}$

- $\alpha_b - \alpha < 2/d_b^{d_b - 1}$ for all $b \geq 5$
- α_b terminates in base b, after D digits say
- α is a tiny bit less than α_b: the difference starts with about $d_b - 1D$ base-b digits equaling 0
- So α has a long string of base-b digits equaling $b - 1$.

How long?

Among the first $d_{b - 1}D$ base-b digits of α, at least a proportion $1 - C/d_{b - 1}$ of them equal $b - 1$ (for some absolute constant C).
Abnormal for one moment at least

Illustrating example: $b = 4$

- $\alpha_4 = (0.222)_{\text{base } 4}$
- $\alpha_4 - \alpha = (0.000000000000000000102322210110 \ldots)_{\text{base } 4}$
- $\alpha = (0.2213333333333333231011123223 \ldots)_{\text{base } 4}$

- $\alpha_b - \alpha < \frac{2}{d_b^{d_b-1}}$ for all $b \geq 5$
- α_b terminates in base b, after D digits say
- α is a tiny bit less than α_b: the difference starts with about $d_{b-1}D$ base-b digits equaling 0
- So α has a long string of base-b digits equaling $b - 1$.

How long?

Among the first $d_{b-1}D$ base-b digits of α, at least a proportion $1 - C/d_{b-1}$ of them equal $b - 1$ (for some absolute constant C).
Abnormal for one moment at least

Illustrating example: $b = 4$

- $\alpha_4 = (0.222)_{\text{base } 4}$
- $\alpha_4 - \alpha = (0.000000000000000000102322210110 \ldots)_{\text{base } 4}$
- $\alpha = (0.221333333333333333231011123223 \ldots)_{\text{base } 4}$

- $\alpha_b - \alpha < 2/d_b^{d_b-1}$ for all $b \geq 5$
- α_b terminates in base b, after D digits say
- α is a tiny bit less than α_b: the difference starts with about $d_{b-1}D$ base-b digits equaling 0
- So α has a long string of base-b digits equaling $b - 1$.

How long?

Among the first $d_{b-1}D$ base-b digits of α, at least a proportion $1 - C/d_{b-1}$ of them equal $b - 1$ (for some absolute constant C).
Abnormal for one moment at least

Illustrating example: $b = 4$

- $\alpha_4 = (0.222)_{\text{base } 4}$
- $\alpha_4 - \alpha = (0.0000000000000000102322210110 \ldots)_{\text{base } 4}$
- $\alpha = (0.221333333333333333231011123223 \ldots)_{\text{base } 4}$

- $\alpha_b - \alpha < 2/d_b^{d_b-1}$ for all $b \geq 5$
- α_b terminates in base b, after D digits say
- α is a tiny bit less than α_b: the difference starts with about d_b-1D base-b digits equaling 0
- So α has a long string of base-b digits equaling $b - 1$.

How long?

Among the first d_b-1D base-b digits of α, at least a proportion $1 - C/d_{b-1}$ of them equal $b - 1$ (for some absolute constant C).
Abnormal for one moment at least

Illustrating example: $b = 4$

- $\alpha_4 = (0.222)_{\text{base } 4}$
- $\alpha_4 - \alpha = (0.0000000000000000102322210110 \ldots)_{\text{base } 4}$
- $\alpha = (0.2213333333333333231011123223 \ldots)_{\text{base } 4}$

- $\alpha_b - \alpha < 2/d_b^{d_b-1}$ for all $b \geq 5$
- α_b terminates in base b, after D digits say
- α is a tiny bit less than α_b: the difference starts with about d_b-1D base-b digits equaling 0
- So α has a long string of base-b digits equaling $b - 1$.

How long?

Among the first d_b-1D base-b digits of α, at least a proportion $1 - C/d_b-1$ of them equal $b - 1$ (for some absolute constant C).
Lots of abnormal moments

Among the first α_b base-b digits of α, at least a proportion $1 - C/d_{b-1}$ of them equal $b - 1$ (for some absolute constant C).

Now change b to b^2:
- Among the first α_{b^2} base-b^2 digits of α, at least a proportion $1 - C/d_{b^2-1}$ of them equal $b^2 - 1$.
- Thus among the first α_{b^2} base-b digits of α, at least a proportion $1 - C/d_{b^2-1}$ of them equal $b - 1$.

We find that α has lots of (disjoint) long strings of base-b digits equaling $b - 1$, coming from changing b to b^2, b^3, b^4,

(and sometimes more)

Such strings also come from k if all prime factors of k divide b: k-adic fractions are also b-adic fractions. For example, in base 10 we already saw long strings of 9s coming from α_4 and α_5.
Lots of abnormal moments

Among the first α_b base-b digits of α, at least a proportion $1 - C/d_b - 1$ of them equal $b - 1$ (for some absolute constant C).

Now change b to b^2:
- Among the first α_{b^2} base-b^2 digits of α, at least a proportion $1 - C/d_{b^2} - 1$ of them equal $b^2 - 1$.
- Thus among the first $2\alpha_{b^2}$ base-b digits of α, at least a proportion $1 - C/d_{b^2} - 1$ of them equal $b - 1$.

We find that α has lots of (disjoint) long strings of base-b digits equaling $b - 1$, coming from changing b to b^2, b^3, b^4, \ldots

(and sometimes more)

Such strings also come from k if all prime factors of k divide b: k-adic fractions are also b-adic fractions. For example, in base 10 we already saw long strings of 9s coming from α_4 and α_5.
Lots of abnormal moments

Among the first β_b base-b digits of α, at least a proportion $1 - C/d_{b-1}$ of them equal $b - 1$ (for some absolute constant C).

Now change b to b^2:
- Among the first β_{b^2} base-b^2 digits of α, at least a proportion $1 - C/d_{b^2-1}$ of them equal $b^2 - 1$.
- Thus among the first $2\beta_{b^2}$ base-b digits of α, at least a proportion $1 - C/d_{b^2-1}$ of them equal $b - 1$.

We find that α has lots of (disjoint) long strings of base-b digits equaling $b - 1$, coming from changing b to b^2, b^3, b^4,

(and sometimes more)

Such strings also come from k if all prime factors of k divide b: k-adic fractions are also b-adic fractions. For example, in base 10 we already saw long strings of 9s coming from α_4 and α_5.

Absolutely abnormal numbers

Greg Martin
Lots of abnormal moments

Among the first \(?_b \) base-\(b \) digits of \(\alpha \), at least a proportion \(1 - \frac{C}{d_b - 1} \) of them equal \(b - 1 \) (for some absolute constant \(C \)).

Now change \(b \) to \(b^2 \):
- Among the first \(?_{b^2} \) base-\(b^2 \) digits of \(\alpha \), at least a proportion \(1 - \frac{C}{d_{b^2} - 1} \) of them equal \(b^2 - 1 \).
- Thus among the first \(2 ?_{b^2} \) base-\(b \) digits of \(\alpha \), at least a proportion \(1 - \frac{C}{d_{b^2} - 1} \) of them equal \(b - 1 \).

We find that \(\alpha \) has lots of (disjoint) long strings of base-\(b \) digits equaling \(b - 1 \), coming from changing \(b \) to \(b^2, b^3, b^4, \ldots \).

(and sometimes more)

Such strings also come from \(k \) if all prime factors of \(k \) divide \(b \): \(k \)-adic fractions are also \(b \)-adic fractions. For example, in base 10 we already saw long strings of 9s coming from \(\alpha_4 \) and \(\alpha_5 \).
Lots of abnormal moments

Among the first \(?_b \) base-\(b \) digits of \(\alpha \), at least a proportion \(1 - C/d_{b-1} \) of them equal \(b - 1 \) (for some absolute constant \(C \)).

Now change \(b \) to \(b^2 \):
- Among the first \(?_{b^2} \) base-\(b^2 \) digits of \(\alpha \), at least a proportion \(1 - C/d_{b^2-1} \) of them equal \(b^2 - 1 \).
- Thus among the first \(2 ?_{b^2} \) base-\(b \) digits of \(\alpha \), at least a proportion \(1 - C/d_{b^2-1} \) of them equal \(b - 1 \).

We find that \(\alpha \) has lots of (disjoint) long strings of base-\(b \) digits equaling \(b - 1 \), coming from changing \(b \) to \(b^2, b^3, b^4, \ldots \).

(and sometimes more)

Such strings also come from \(k \) if all prime factors of \(k \) divide \(b \): \(k \)-adic fractions are also \(b \)-adic fractions. For example, in base 10 we already saw long strings of 9s coming from \(\alpha_4 \) and \(\alpha_5 \).
\(\alpha \) is absolutely abnormal

Definition (counting base-\(b \) digits equaling \(a \))

\[
N(\alpha; b, a, x) = \# \{ 1 \leq n \leq x : \text{the } n\text{th digit in the base-}b\text{ expansion of } \alpha \text{ is } a \}
\]

- We’ve found a sequence \(\{x_1, x_2, \ldots \} = \{?_b, 2?_b^2, \ldots \} \) such that \(N(\alpha; b, b-1, x_j) > (1 - C/d_{b^j-1})x_j \).
- So \(\limsup_{x \to \infty} \frac{N(\alpha; b, b-1, x)}{x} \geq \limsup_{j \to \infty} (1 - C/d_{b^j-1}) = 1 \).
- This conflicts with \(\lim_{x \to \infty} \frac{N(\alpha; b, b-1, x)}{x} = \frac{1}{b} \).

Theorem (M., 2001)

\(\alpha \) is an irrational number that fails to be (simply) normal to any base \(b \geq 2 \).
\(\alpha \) is absolutely abnormal

Definition (counting base-\(b \) digits equaling \(a \))

\[
N(\alpha; b, a, x) = \#\{1 \leq n \leq x : \text{the } n\text{th digit in the base-}b \text{ expansion of } \alpha \text{ is } a\}
\]

- We’ve found a sequence \(\{x_1, x_2, \ldots\} = \{?_b, 2?_b^2, \ldots\} \) such that \(N(\alpha; b, b - 1, x_j) > (1 - C/d_{b^j - 1})x_j \).
- So \(\limsup_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} \geq \limsup_{j \to \infty} (1 - C/d_{b^j - 1}) = 1 \).
- This conflicts with \(\lim_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} = \frac{1}{b} \).

Theorem (M., 2001)

\(\alpha \) is an irrational number that fails to be (simply) normal to any base \(b \geq 2 \).
\(\alpha \) is absolutely abnormal

Definition (counting base-\(b \) digits equaling \(a \))

\[
N(\alpha; b, a, x) = \#\{1 \leq n \leq x: \text{ the } n\text{th digit in the base-}\, b \text{ expansion of } \alpha \text{ is } a\}
\]

- We’ve found a sequence \(\{x_1, x_2, \ldots\} = \{?_b, 2?_b^2, \ldots\} \) such that \(N(\alpha; b, b - 1, x_j) > (1 - C/d_{b^{j-1}})x_j \).
- So \(\limsup_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} \geq \limsup_{j \to \infty} (1 - C/d_{b^{j-1}}) = 1 \).
- This conflicts with \(\lim_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} = \frac{1}{b} \).

Theorem (M., 2001)

\(\alpha \) is an irrational number that fails to be (simply) normal to any base \(b \geq 2 \).
\(\alpha \) is absolutely abnormal

Definition (counting base-\(b \) digits equaling \(a \))

\[
N(\alpha; b, a, x) = \#\{1 \leq n \leq x: \text{the } n\text{th digit in the base-} b \text{ expansion of } \alpha \text{ is } a\}
\]

- We’ve found a sequence \(\{x_1, x_2, \ldots\} = \{?_b, 2?_{b^2}, \ldots\} \) such that
 \[
 N(\alpha; b, b-1, x_j) > (1 - C/d_{b^{j-1}})x_j.
 \]
- So \(\limsup_{x \to \infty} \frac{N(\alpha; b, b-1, x)}{x} \geq \limsup_{j \to \infty} (1 - C/d_{b^{j-1}}) = 1. \)
- This conflicts with \(\lim_{x \to \infty} \frac{N(\alpha; b, b-1, x)}{x} = \frac{1}{b}. \)

Theorem (M., 2001)

\(\alpha \) is an irrational number that fails to be (simply) normal to any base \(b \geq 2. \)
\(\alpha \) is absolutely abnormal

Definition (counting base-\(b \) digits equaling \(a \))

\[
N(\alpha; b, a, x) = \# \{1 \leq n \leq x: \text{the } n\text{th digit in the base-}\,b\,\text{ expansion of } \alpha \text{ is } a\}
\]

- We’ve found a sequence \(\{x_1, x_2, \ldots\} = \{?_b, 2?_b^2, \ldots\} \) such that \(N(\alpha; b, b - 1, x_j) > (1 - C/d_{b-1})x_j \).
- So \(\limsup_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} \geq \limsup_{j \to \infty} (1 - C/d_{b-1}) = 1 \).
- This conflicts with \(\lim_{x \to \infty} \frac{N(\alpha; b, b - 1, x)}{x} = \frac{1}{b} \).

Theorem (M., 2001)

\(\alpha \) is an irrational number that fails to be (simply) normal to any base \(b \geq 2 \).
Different parameters

The original construction

- $d_2 = 2^2$
- $\alpha_2 = 3/d_2$
- $d_j = j^{d_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j\right)$

We can generalize the construction in two ways:

- Start with any dyadic fraction $\alpha_2 = n_1/2^{n_2}$ in place of $3/4$.
- Insert positive integer multiples n_j in the recursion for d_j.

The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1/d_2$
- $d_j = j^{n_j d_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j\right)$
Different parameters

The original construction

- \(d_2 = 2^2 \)
- \(\alpha_2 = 3/d_2 \)
- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j \right) \)

We can generalize the construction in two ways:

- Start with any dyadic fraction \(\alpha_2 = n_1/2^{n_2} \) in place of \(3/4 \).
- Insert positive integer multiples \(n_j \) in the recursion for \(d_j \).

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1/d_2 \)
- \(d_j = j^{n_jd_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j \right) \)
Different parameters

The original construction

- \(d_2 = 2^2 \)
- \(\alpha_2 = 3/d_2 \)
- \(d_j = j^{d_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^k \left(1 - 1/d_j\right) \)

We can generalize the construction in two ways:
- Start with any dyadic fraction \(\alpha_2 = n_1/2^{n_2} \) in place of \(3/4 \).
- Insert positive integer multiples \(n_j \) in the recursion for \(d_j \).

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1/d_2 \)
- \(d_j = j^{n_j d_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^k \left(1 - 1/d_j\right) \)
Different parameters, same result

The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1 / d_2$
- $d_j = j^{n_j d_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j\right)$

- The numbers n_3, n_4, \ldots just accelerate the convergence of α, and all the inequalities are still satisfied and more.
- In particular, $\alpha_2 > \alpha > \alpha_2 - 2/d_2$. So by choosing n_1 and n_2 suitably, we can ensure that α ends up in any prescribed interval.
- Each α_k is a k-adic fraction because the key divisibility still holds: $d_k \mid (k+1)^{d_k/k} - 1 \mid (k+1)^{n_k d_k/k} - 1$
- By varying the n_j, we obtain uncountably many (distinct) irrational, absolutely abnormal numbers.
Different parameters, same result

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1/d_2 \)
- \(d_j = j^{n_j d_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1/d_j) \)

The numbers \(n_3, n_4, \ldots \) just accelerate the convergence of \(\alpha \), and all the inequalities are still satisfied and more.

In particular, \(\alpha_2 > \alpha > \alpha_2 - 2/d_2 \). So by choosing \(n_1 \) and \(n_2 \) suitably, we can ensure that \(\alpha \) ends up in any prescribed interval.

Each \(\alpha_k \) is a \(k \)-adic fraction because the key divisibility still holds: \(d_k \mid ((k + 1)^{d_k/k} - 1) \) | \(((k + 1)^{n_k d_k/k} - 1) \)

By varying the \(n_j \), we obtain uncountably many (distinct) irrational, absolutely abnormal numbers.
The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1/d_2$
- $d_j = j^{n_jd_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^k (1 - 1/d_j)$

The numbers n_3, n_4, \ldots just accelerate the convergence of α, and all the inequalities are still satisfied and more.

In particular, $\alpha_2 > \alpha > \alpha_2 - 2/d_2$. So by choosing n_1 and n_2 suitably, we can ensure that α ends up in any prescribed interval.

Each α_k is a k-adic fraction because the key divisibility still holds: $d_k \mid ((k + 1)^{d_k/k} - 1) \mid ((k + 1)^{n_kd_k/k} - 1)$

By varying the n_j, we obtain uncountably many (distinct) irrational, absolutely abnormal numbers.
Different parameters, same result

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1/d_2 \)
- \(d_j = j^{n_jd_{j-1}/(j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j\right) \)

The numbers \(n_3, n_4, \ldots \) just accelerate the convergence of \(\alpha \), and all the inequalities are still satisfied and more.

In particular, \(\alpha_2 > \alpha > \alpha_2 - 2/d_2 \). So by choosing \(n_1 \) and \(n_2 \) suitably, we can ensure that \(\alpha \) ends up in any prescribed interval.

Each \(\alpha_k \) is a \(k \)-adic fraction because the key divisibility still holds: \(d_k \mid ((k + 1)^{d_k/k} - 1) \mid ((k + 1)^{n_kd_k/k} - 1) \)

By varying the \(n_j \), we obtain uncountably many (distinct) irrational, absolutely abnormal numbers.
Particular parameters

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1 / d_2 \)
- \(d_j = j^{n_j d_{j-1}} / (j-1) \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1 / d_j) \)

One neat example: \(n_1 = n_2 = 1 \) and \(n_j = \phi(j - 1) \) for \(j \geq 3 \)

- The result is that \(d_j = j^{\phi(d_{j-1})} \) for \(j \geq 3 \).
- The key divisibility \(d_k | ((k + 1)^{\phi(d_k)} - 1) \) just follows from Euler’s theorem.

The only choice that doesn’t work: \(n_j = 1 \) for all \(j \geq 1 \)

- The result is that \(d_j = j \) for \(j \geq 2 \), and we get the telescoping product \(\alpha_k = \frac{1}{2} \prod_{j=3}^{k} (1 - \frac{1}{j}) = \frac{1}{k} \).
- In this case \(\alpha = 0 \). (Well, it is absolutely abnormal!)
Particular parameters

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1 / d_2 \)
- \(d_j = j^{n_j d_{j-1} / (j-1)} \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} \left(1 - 1/d_j \right) \)

One neat example: \(n_1 = n_2 = 1 \) and \(n_j = \phi(j - 1) \) for \(j \geq 3 \)

- The result is that \(d_j = j^{\phi(d_{j-1})} \) for \(j \geq 3 \).
- The key divisibility \(d_k | ((k + 1)^{\phi(d_k)} - 1) \) just follows from Euler’s theorem.

The only choice that doesn’t work: \(n_j = 1 \) for all \(j \geq 1 \)

- The result is that \(d_j = j \) for \(j \geq 2 \), and we get the telescoping product \(\alpha_k = \frac{1}{2} \prod_{j=3}^{k} \left(1 - \frac{1}{j} \right) = \frac{1}{k} \).
- In this case \(\alpha = 0 \). (Well, it is absolutely abnormal!)
Introduction

Constructing our number

Proving irrationality and abnormality

Generalizing the construction

Particular parameters

The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1/d_2$
- $d_j = j^{n_jd_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1/d_j)$

One neat example: $n_1 = n_2 = 1$ and $n_j = \phi(j - 1)$ for $j \geq 3$

- The result is that $d_j = j^{\phi(d_{j-1})}$ for $j \geq 3$.
- The key divisibility $d_k | ((k + 1)\phi(d_k) - 1)$ just follows from Euler’s theorem.

The only choice that doesn’t work: $n_j = 1$ for all $j \geq 1$

- The result is that $d_j = j$ for $j \geq 2$, and we get the telescoping product $\alpha_k = \frac{1}{2} \prod_{j=3}^{k} (1 - \frac{1}{j}) = \frac{1}{k}$.
- In this case $\alpha = 0$. (Well, it is absolutely abnormal!)
Particular parameters

The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1/d_2$
- $d_j = j^{n_jd_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1/d_j)$

One neat example: $n_1 = n_2 = 1$ and $n_j = \phi(j - 1)$ for $j \geq 3$

- The result is that $d_j = j^{\phi(d_{j-1})}$ for $j \geq 3$.
- The key divisibility $d_k | ((k + 1)\phi(d_k) - 1)$ just follows from Euler’s theorem.

The only choice that doesn’t work: $n_j = 1$ for all $j \geq 1$

- The result is that $d_j = j$ for $j \geq 2$, and we get the telescoping product $\alpha_k = \frac{1}{2} \prod_{j=3}^{k} (1 - \frac{1}{j}) = \frac{1}{k}$.
- In this case $\alpha = 0$. (Well, it is absolutely abnormal!)
Particular parameters

The generalized construction

- $d_2 = 2^{n_2}$
- $\alpha_2 = n_1 / d_2$
- $d_j = j^{n_j d_{j-1}/(j-1)}$
- $\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1/d_j)$

One neat example: $n_1 = n_2 = 1$ and $n_j = \phi(j - 1)$ for $j \geq 3$

- The result is that $d_j = j^{\phi(d_{j-1})}$ for $j \geq 3$.
- The key divisibility $d_k \mid ((k + 1)\phi(d_k) - 1)$ just follows from Euler’s theorem.

The only choice that doesn’t work: $n_j = 1$ for all $j \geq 1$

- The result is that $d_j = j$ for $j \geq 2$, and we get the telescoping product $\alpha_k = \frac{1}{2} \prod_{j=3}^{k} (1 - \frac{1}{j}) = \frac{1}{k}$.
- In this case $\alpha = 0$. (Well, it is absolutely abnormal!)
Particular parameters

The generalized construction

- \(d_2 = 2^{n_2} \)
- \(\alpha_2 = n_1 / d_2 \)
- \(d_j = j^{njd_{j-1}} / (j-1) \)
- \(\alpha_k = \alpha_2 \prod_{j=3}^{k} (1 - 1/d_j) \)

One neat example: \(n_1 = n_2 = 1 \) and \(n_j = \phi(j - 1) \) for \(j \geq 3 \)

- The result is that \(d_j = j^{\phi(d_{j-1})} \) for \(j \geq 3 \).
- The key divisibility \(d_k \mid ((k + 1)\phi(d_k) - 1) \) just follows from Euler’s theorem.

The only choice that doesn’t work: \(n_j = 1 \) for all \(j \geq 1 \)

- The result is that \(d_j = j \) for \(j \geq 2 \), and we get the telescoping product \(\alpha_k = \frac{1}{2} \prod_{j=3}^{k} (1 - \frac{1}{j}) = \frac{1}{k} \).
- In this case \(\alpha = 0 \). (Well, it is absolutely abnormal!)
The end

The paper *Absolutely abnormal numbers*, as well as these slides, are available for downloading:

My papers

My talk slides

The end

The paper *Absolutely abnormal numbers*, as well as these slides, are available for downloading:

My papers

www.math.ubc.ca/~gerg/index.shtml?research

My talk slides

www.math.ubc.ca/~gerg/index.shtml?slides

Please leave 3D glasses with the attendant.