(1) Find the number of ways that 2016 can be written in the form $\sum_{i \geq 0} a_i 2^i$, where the a_i are allowed to take the values 0, 1, 2, or 3.

(2) Let C_1, C_2, and C_3 be three circles of radius 1 in the plane, no two of which are tangent to each other, that all pass through a point P. Each pair of circles intersects in a second point besides P; call these three other points of intersection Q, R, and S. Now draw three new circles D_1, D_2, and D_3 of radius 1, centered at the three points Q, R, and S. Show that D_1, D_2, and D_3 all intersect in a common point.

(3) Let S be the set of all 2016×2016 matrices all of whose entries are 1 or -1. Let $M = \max \{ \det(A) : A \in S \}$ be the largest determinant of any matrix in S. Prove that M is a multiple of 2^{2015}.

(4) Let S be a set of 2017 distinct positive real numbers. Prove that there is an ordering $S = \{ a_0, a_1, \ldots, a_{2016} \}$ of the numbers in S such that the polynomial

$$a_{2016}x^{2016} + a_{2015}x^{2015} + \cdots + a_2x^2 + a_1x + a_0$$

has no real roots.

(5) Find a positive integer B with the following property: there are exactly 2011 positive integers $A < B$ such that

$$\text{lcm}(A, B) + \gcd(A, B) = A + B.$$

(6) Determine

$$\lim_{x \to 0^+} \left(x \left(x \left(\cdots \left(x\left(x \cdots \left(x \right) \cdots \right) \right) \right) \right) \right).$$

(7) Let n be a positive integer, and suppose that n^n is a K-digit number (when written in base 10 as usual). Suppose further that $|K - 10^{100}| \leq 100$. How many digits does n itself have?

(8) Suppose that F is a finite set of points in the plane, containing at least three points, with the following property: anytime a line is drawn through two points of F, that line contains a third point of F (possibly other points of F as well, but at least three in total). Prove that all of the points in F lie on a single line.