Goals of Midterm 2

At this moment, you should be able to achieve the following goals. (The page numbers refer to those of the pdf handouts.)

Warning: Due to the unexpected high mean of Midterm 1, Midterm 2 will be much harder!!

1. About matrix inverse
 - the meaning (Sec 2.2, p.4,10),
 - how to compute it (Sec 2.2, p.7,10), and
 - the properties (Sec 2.3, p.2).

2. The Invertible Matrix Theorem: all consequences when A is invertible. (p.10 of Sec 2.3 and p.12 of Sec 2.5-2.6 Part 3),

3. Understand the concept of a subspace (p.3-7 of Sec 2.5-2.6, part 1) and a basis of a subspace (p.8-9 of Sec 2.5-2.6, part 1).

4. Given a matrix A,
 - How to find a basis for $\text{Col } A$ (extracting linearly independent columns, see p.3-5 of Sec 2.5-2.6, part 2)
 - How the columns depend on the basis vectors
 (by reading the non-pivotal columns of the REF, see p.3-5 of Sec 2.5-2.6, part 2)
 - How to find a basis for $\text{Nul } A$
 (parametric vector form of the homogeneous equation, see p.11 of Sec 2.5-2.6, part 2)
 - Relation of the dimensions of $\text{Col } A$ and $\text{Nul } A$
 (the rank theorem, see p.3 of Sec 2.5-2.6, part 3)

5. Coordinate vector: given x in \mathbb{R}^n and a basis B for \mathbb{R}^n.
 - The meaning of $[x]_B$, the coordinate vector of x relative to the basis B (p.4-6,9 of Sec 2.5-2.6, part 3),
 - how to transit between x and $[x]_B$ (p.5,6 of Sec 4.4).

6. Coordinate matrix: given $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and bases B for \mathbb{R}^n, C for \mathbb{R}^m.
 - The meaning of the matrix $[T]_C^B$ (p.9-10 of Sec 4.4) and how to compute it (p.11 of Sec 4.4)
 - how to transit between T and $[T]_C^B$ by diagram chasing (p.12 of Sec 4.4).

7. Understand the properties of determinants (summarized in p.6 of Sec 3.1-3.2, part 1, or p.3-4 of part 2). Especially,
 - the linear property (summarized in p.25 of Sec 3.1-3.2, part 1)
 - the change under row operation (summarized in p.5 of Sec 3.1-3.2, part 2)

8. Compute a determinant using
 - Gaussian elimination (p.5 of Sec 3.1-3.2, part 2).
 - cofactor expansion (p.7 of Sec 3.1-3.2, part 3).
Practice exercises

• Sec 2.2: Practice problem 2, Exercises 1,3,5,8,9a-d,10,13, 17, 29, 31 (use the algorithm I showed in class), 35
 (The following questions require the big Invertible Matrix Theorem) 21, 22, 23, 24

• Sec 2.3: Practice problems 1,2,3, Exercises 1,3,5, 11, 12, 13, 14,
 (The following questions require the big Invertible Matrix Theorem) 15, 17, 18, 19, 20, 21,
 24, 35, 36, 39

• Sec 2.5 (Sec 2.8 in the 4th ed.): 5,7,9,10, 15,17,19,20, 21b,c,d,e, 22b,c, 24,26, 32,33,34,35,36

• Sec 2.6 (Sec 2.9 in the 4th ed.): 1,5,7,9,11,16, 17 a,c,d,e, 18 a,b,c,d,e, 19,21, 22,25

• Sec 4.4 (Sec 5.4 in the 4th ed.): 1,3,11,27,28,29,31
 (To approach the following questions, read the hints in Question 19) 19,20,21,24,25

• Sec 3.1: 1,9,11,13,19,21,23,37,38,39a, 40b.

• Sec 3.2: 1,3,5,7,15,17,18,19,21,22,24, 27a,c,d, 28a,b,29,39.
 (For the following questions, see the last two pages of the handout on Sec. 3.1-3.2, Part 1)
 31,32,33,34,35,36

You may check the solutions at:
The Invertible Matrix Theorem: all consequences when \(A \) is invertible.

(p.10 of Sec 2.3 and p.12 of Sec 2.5-2.6 Part 3),

- j. k. existence of the matrix \(A^{-1} \)
- As a linear transformation
 - f. \(A \) is one-to one, or
 - i. \(A \) is onto,
- The uniqueness of solution
 - g. For every \(b \), the system \(Ax = b \) has only 1 solution.
 - d. The homogeneous system \(Ax = 0 \) has only trivial solution.
- Reduced echelon form
 - b. The RREF of \(A \) is \(I \).
 - c. The REF of \(A \) has \(n \) pivots.
- The column vectors of \(A \)
 - e. are linearly independent,
 - h. span \(\mathbb{R}^n \)
 - m. form a basis of \(\mathbb{R}^n \)
- The column space of \(A \)
 - n. is the whole \(\mathbb{R}^n \),
 - o. p. \(\text{dim col } A = \text{rank } A = n \)
- The null space of \(A \)
 - q. is the zero subspace \(0 \),
 - r. \(\text{dim nul } A = \text{nullity } A = 0 \).
- l. Transpose \(A^T \) is also invertible
 \(\Rightarrow \) The above statements about columns are also true about rows.
- t. \(\det A \neq 0 \).