1. We list all possible outcomes:

\[S = \{ HH, THH, HTTH, TTHH, TTTTH, THHTT, HTTTH, HTTHH, TTTHH, THTHH, HTTHT, TTHTH, HTHTH, THTTH, HTTTH, TTTTH \} \]

The probabilities are: \(P(HH) = \frac{1}{4}, P(THH) = \frac{1}{8}, P(HTTHH) = P(TTHH) = \frac{1}{16} \), and each of the 16 outcomes with five tosses has probability \(\frac{1}{32} \). (Note that \(P(S) = 1 \), as it must.)

2. (a) \(F \cap E^c \cap G^c \), (b) \(E \cap F \cap G^c \), (c) \(E \cup F \cup G \), (d) \((E \cap F) \cup (E \cap G) \cup (F \cap G) \), (e) \(E \cap F \cap G \), (f) \(E^c \cap F^c \cap G^c \), (g) \((E \cap F)^c \cap (E \cap G)^c \cap (F \cap G)^c \), (h) \((E \cap F \cap G)^c \). [4]

3. (a) There are \(\binom{12}{40} \) ways to choose 12 marked beetles from 40, \(\binom{n-40}{60} \) ways to choose 48 unmarked beetles from \(n-40 \), and \(\binom{n}{60} \) ways to choose 60 beetles from \(n \), so

\[L(n) = \frac{\binom{12}{40} \binom{n-40}{60}}{\binom{n}{60}}. \]

(b) \[\frac{L(n)}{L(n-1)} = \frac{\binom{n-40}{60} \binom{n-1}{48}}{\binom{n}{60} \binom{n-41}{48}} = \frac{(n-40)(n-60)}{(n-88)n} = \frac{n^2 - 100n + 2400}{n^2 - 88n}. \]

Thus \(L(n)/L(n-1) \leq 1 \) is equivalent to \(n^2 - 100n + 2400 \leq n^2 - 88n \), or \(n \geq 200 \). Therefore \(L(n) \) is increasing when \(n \leq 200 \) and decreasing for \(n \geq 200 \), and \(L(n) \) is maximal when \(n = 200 \).

Note: This is consistent with the guess that the proportion of marked beetles in the sample should equal the proportion in the pond, i.e., \(\frac{12}{60} = \frac{40}{n} \), which again gives \(n = 200 \).

4. (a) i. \[\frac{1}{\binom{5}{2}} \binom{13}{1} \binom{12}{3} \binom{4}{2} \binom{4}{1}^3 = 0.4226, \]

where the factors in the numerator are respectively the number of ways to choose: value of \(a \), values \{b, c, d\}, suits for the pair, suits for \(b, c, d \). [2]

ii. \[\frac{1}{\binom{5}{2}} \binom{13}{2} \binom{11}{1} \binom{4}{2} \binom{4}{1}^2 = 0.0475, \]

where the factors in the numerator are respectively the number of ways to choose: values \{a, b\}, value of \(c \), suits for \(a, b \), suit for \(c \). [2]

(b) Think of the dice as having different colours, so the sample space has size \(6^3 \).

i. \[\frac{1}{6^3} \binom{6}{1} \binom{5}{3} \binom{5}{2} \binom{3}{1} \binom{2}{1} \binom{1}{1} = 0.4630, \]

where the binomial coefficients respectively count the number of ways to choose: \(a, \{b, c, d\} \), 2 dice for value \(a \), 1 die for value \(b \), 1 die for value \(c \), 1 die for value \(d \). [2]

ii. \[\frac{1}{6^5} \binom{6}{2} \binom{4}{1} \binom{5}{2} \binom{3}{2} \binom{1}{1} = 0.2315, \]

where the binomial coefficients respectively count the number of ways to choose: \{a, b\}, c, 2 dice for value \(a \), 2 dice for value \(b \), 1 die for value \(c \). [2]

5. (a) A configuration is equivalent to a list of \(n+(m-1) \) objects with \(m-1 \) of them specified as barriers, so the number of configurations is \(\binom{n+m-1}{m-1} \). [2]

(b) A configuration is equivalent to specifying which of the \(m \) urns contain one of the \(n \) balls, so there are \(\binom{m}{n} \) configurations. [2]
6. (a)

```python
import numpy as np

def Birthday(n):
    # Generate the random birthdays
    a = np.random.randint(1,365,size=n)
    y = 0

    # Check if there are duplicate entries:
    # Create indices k, l to run over pairs of elements of the vector a
    k = 1
    while ((y == 0) & (k < n)):
        l = k + 1
        while ((y == 0) & (l <= n)):
            if a[1,k] == a[1,l]:
                y = 1
            else:
                l = l+1
        k = k + 1
    return(y)
```

(b)

```python
def X(n):
    i = 1
    s = 0
    while i < 1000:
        i += 1
        s = s + Birthday(n)
    return(s / 1000)

def Y(n):
    Y = 1 - (np.math.factorial(365) / ((365**n) * np.math.factorial(365-n)))
    return(Y)
```

```python
def Iterator(func):
    L = []
    for i in range(2,61):
        L.append(func(i))
    return(L)
```

(c)

```python
import matplotlib.pyplot as plt

# Commands for plotting:
plt.title('Birthday Problem')
plt.plot(n,Iterator(Y),label = "Y(n)")
plt.plot(n,Iterator(X),label = "X(n)")
xlabel('Number of people')
ylabel('Probability of a match')
plt.show()
```