8.1 Markov Processes

8.1.1 Finite State Markov Processes

Definition 8.1 Transition Matrix: What is X_{t+1} given X_t?

$X_t = \{\text{Eat, Sleep, Active}\}, t = 1, 2, 3$

$$M = \begin{pmatrix}
0.5 & 0 & 0.5 \\
0.5 & 0 & 0.5 \\
0 & 0.5 & 0.5
\end{pmatrix}$$

Note: The rows sum to 1.

If we know $x_o = E$, $X_1 \sim M \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. If we think that the state at time t is $P_t = \begin{pmatrix} 0.1 & 0.9 \\ 0.8 & 0.2 \end{pmatrix}$, then we can push P_t through M to get the distribution over states at time $t + 1$.

$P_{t+1} = MP_t$

so for $x_o = E$, $X_2 \sim MX_1 = M^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

The transition from time 1 to time 3, $X_3|X_1$, is M^2. (Composition property of the transition matrix)

As $t \to \infty$, $P_t \to$ top eigenvector of M, P_∞ (stationary distribution).

$P_\infty M = P_\infty$, ie $\lambda = 1$

Exercise to check: A matrix whose rows sum to 1 will always have an eigenvector with $\lambda = 1$.

8.1.2 Finite State Continuous Time Markov Processes

Transition rates, eg $r_{e\to s}$, $r_{s\to e}$, are exponential random variables. Whichever event happens first is the path you choose.
8.1.3 Continuous Time, Continuous State Markov Processes

Definition 8.2 A transition kernel is a map from point x in state space χ to distributions on state space.

$$
\gamma : x \mapsto \gamma(\cdot|x)
$$

The probability that x transitions to somewhere in A is $\gamma(A|x)$ for any set $A \subset \chi$.

A continuous time Markov process has a transition kernel for every pair of time points $t_1 < t_2$.

$\gamma_{t_2|t_1}(\cdot|x)$ is the probability distribution for the state at time t_2 given we start from state x at time t_1.

$\gamma_{t_2|t_1}(dy|x)$ is the probability of transitioning into dy.

Denote the state at time t by X_t. Then $\gamma_{t_2|t_1}(\cdot|x)$ is the law of $X_{t_2}|X_{t_1} = x$.

8.1.3.1 Compositional Property

$$(\gamma_{t_2|t_1} \circ \gamma_{t_3|t_2})(dz|x) = \int \gamma_{t_3|t_2}(dy|x) \gamma_{t_2|t_1}(dz|y)$$

$$= \gamma_{t_3|t_1}(dz|x) \quad \text{definition of Markov}$$

(8.1)
8.2 Developmental Stochastic Processes

\[P \] describes the population of cells at time \(t \). \(\gamma_{t_2|t_1}(\cdot|x) \) describes the "transitions". We interpret \(\gamma_{t_2|t_1}(\cdot|x) \) as the distribution of descendants of \(x \).

\[\gamma : x \xrightarrow{\text{at time } t_1} \gamma_{t_2|t_1}(\cdot|x) \xrightarrow{\text{descendants at time } t_2, \text{ probability measure on } \chi} \]

For any set \(A \subset \chi \), \(\gamma(A|x) \) is the probability that the cell \(x \) has a descendant in \(A \).

Note:

Consider a random cell \(X_{t_2} \) at time \(t_2 \). \(X_{t_2} \sim P_{t_2} \). Define \(A_{t_1} \) to be the unique ancestor of \(X_{t_2} \).

\[A_{t_1} = \text{Ancest}(X_{t_2}) \]

\[A_{t_1} \sim Q_{t_1} \neq P_{t_1} \]

We can define a joint distribution \(\gamma_{t_2,t_1} = (A_{t_1}, X_{t_2}) \). There is a nice relationship between \(\gamma_{t_2|t_1} \) and \(\gamma_{t_2,t_1} \).

Details next class.

8.2.1 Sampling from an Elemental Stochastic Process with a scRNA-seq Time Course

Goal: Learn about \(\gamma_{t_2|t_1} \). But measurements kill cells. So we can’t look at transitions in high dimensional \(\chi \).

Steps:

1. Prepare independent populations following the same process
2. Sample at different time points

At time \(t_1 \) get samples \(X_1, X_2, \ldots, X_{n_1} \sim P_{t_1} \)
At time \(t_2 \) get samples \(Y_1, Y_2, \ldots, Y_{n_2} \sim P_{t_2} \)
At time t_T get samples $Z_1, Z_2, ..., Z_{nT} \sim P_{tT}$.

We can construct $\hat{P}_{t1} = \sum_{i=1}^{n} \delta_{x_i}$, but how do we construct $\gamma_{t2|t1}$?

Methods to construct lineage trajectories:

1. Computationally infer from samples $\hat{P}_{t1}, \hat{P}_{t2}, \hat{P}_{t3}, ...$

2. Lineage tracing at time t_i

 Gives information on lineage tree, but not state of the ancestors.

 Use CRISPR to create mutations in an unimportant part of DNA. It is still a bit of an open problem how to merge this data with scRNA-seq.

3. RNA velocity

 If we read enough of the RNA sequence, we can tell if it has been spliced or not. Splicing occurs with a given rate. The longer mRNA has been around, the more likely it has been spliced.