5.1 Introduction

This is the first lecture on probability. Our goal is to understand mathematically how a sample of cells is representative of the whole population.

Definition 5.1 A measure assigns a mass to subsets of a space X. For a subset $A \subset X$, $\mu(A)$ is the measure of A; where μ satisfies all of the following properties:

1. μ is non-negative ($\mu(A) \geq 0, \forall A \in X$);
2. μ is additive ($\mu(A \cup B) = \mu(A) + \mu(B), \forall A, B \in X$);
3. $\mu(\emptyset) = 0$.

Definition 5.2 A probability measure, or distribution, \mathbb{P}, assigns mass 1 to the whole space; that is, $\mathbb{P}(X) = 1$.

A probability measure \mathbb{P} tells us $\text{Prob}\{X \in A\} = \mathbb{P}(A)$.

Definition 5.3 A random variable, X, is a random element of X.

Example 5.4 Coin flip: $H =$ heads, $T =$ tails

$X = \{H, T\}, \mathbb{P}(H) = \frac{1}{2}, \mathbb{P}(T) = \frac{1}{2}$

Random variable: flip (F)

$\text{Prob}\{F = H\} = \mathbb{P}(H) = \frac{1}{2}$.

Example 5.5 A Gaussian (Normal) random variable has distribution \mathbb{P} with density $p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ on $X = \mathbb{R}$.

$\text{Prob}\{X \in A\} = \int_A p(x)dx = \mathbb{P}(A)$.

Example 5.6 A pair of random variables (X, Y) is a random variable.

Definition 5.7 A distribution for a pair of random variables is called a joint distribution.

Definition 5.8 A pair of random variables are independent if the realization of one does not affect the realization of the other; that is, $p(x, y) = p(x)p(y)$.

Put another way, $\text{Prob}\{X \in A \text{ and } Y \in B\} = \text{Prob}\{X \in A\} \text{Prob}\{Y \in B\}$.

5-1
5.2 Application to Cell Sampling

Consider a population of cells represented by \mathbb{P}, a probability distribution on the space of all cell states. For now assume RNA completely encodes cell state. This implies \mathbb{P} is a probability distribution on the gene expression space, X.

Sample $X_1, X_2, ..., X_n \sim \mathbb{P}$, where \mathbb{P} is on the order of $\mathbb{R}^{20,000}$. Then for each integer $i = 1, 2, ..., 20000$, we have

$$X_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{i20,000} \end{bmatrix}, \quad X_i \in \mathbb{R}^{20,000}, \quad \text{Prob}\{X_i \in A\} = \mathbb{P}(A), \quad (5.1)$$

where A is a set of expression vectors.

Example 5.9 Suppose you have a plate with 50% cell type 1 and 50% cell type 2. Then X_1 is like the coin-flip example (Example 5.4).

Example 5.10 Dirac δ-function is a probability measure with no density. δ_x assigns mass 1 to any set containing the point x. δ_x is a "point mass".

Definition 5.11 The empirical measure for samples $X_1, ..., X_n$ is:

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}.$$

\mathbb{P}_n is a probability measure.

Proof: $\mathbb{P}_n(X) = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}(X) = \frac{1}{n} \sum_{i=1}^{n} 1 = \frac{1}{n} n = 1.$ \hfill \blacksquare

How similar is \mathbb{P}_n to \mathbb{P}?
Definition 5.12 The expected value of a random variable with distribution \mathbb{P} is:
$$E[X] = \int x \, d\mathbb{P}(x) = \int x \, p(x) \, dx,$$
where the second equality applies if and only if \mathbb{P} has density.

Fact 1: $\int f(y) \delta_x(y) \, dy (= \int f(y) \delta_x(y)) = f(x)$.

Figure 5.2: Illustration of Fact 1. f is an arbitrary function, "δ_x" is a function whose integral over the real line is 1. As the peak of "δ_x" gets narrower, we see that "$\delta_x \rightarrow \delta_x$", and $\int f(y) \delta_x(y) \, dy \rightarrow f(x)$.

Definition 5.13 The mean of \mathbb{P}_n is $\frac{1}{n} \sum_{i=1}^{n} X_i$.

Fact: $\int x \, d\mathbb{P}_n(x) = \int x d(\frac{1}{n} \sum_{i=1}^{n} \delta_{X_i})$.

The Law of Large Numbers says that $\int x \, d\mathbb{P}_n(x) \rightarrow \int x \, d\mathbb{P}$ as $n \rightarrow \infty$ and also $\int f(x) \, d\mathbb{P}_n(x) \rightarrow \int f(x) \, d\mathbb{P}(x)$.

5.3 Dimensionality Reduction

We can linearize the problem using Principal Component Analysis (PCA). Given samples $X_1, ..., X_n \sim \mathbb{P}$, PCA identifies the linear subspace of $\mathbf{X} = \mathbb{R}^{20,000}$, where the data is spread out.

We construct a gene expression matrix (this is an $n \times 20000$ random matrix):
$$\chi = [X_1 \, X_2 \, ... \, X_n]$$ (note that each X_i is a 20,000-component vector).

Then we define the (random) matrix $S^{(n)} = \frac{1}{n} \chi \chi^T$. That is,

$$S^{(n)} = [X_1 \, X_2 \, ... \, X_n] \begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T = \int x x^T \, d\mathbb{P}_n(x) = \int x x^T d(\frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}). \quad (5.2)$$
Note that, since χ is an $n \times 20000$ matrix, then χ^T is a $20000 \times n$ matrix, so $S^{(n)}$ is a 20000×20000 matrix. Also, as $n \to \infty$, $S^{(n)} \to S$, where we define

$$S = \int x x^T dP(x).$$

We compute the eigenvectors of $S^{(n)}$:

$$S^{(n)}v = \lambda v, \text{ so } S^{(n)} = \sum_{i=1}^{d} \lambda_i v_i v_i^T,$$

where $\lambda_1 > \lambda_2 > \ldots > \lambda_d > 0$.

Since working in higher dimensions requires more computations, we project the data X_1, \ldots, X_n onto $\text{span}\{v_1, \ldots, v_k\}$ for some $k < d$ and define

$$\widehat{S}^{(n)} = \sum_{i=1}^{k} \lambda_i v_i v_i^T.$$

![Figure 5.3](image)

Figure 5.3: There are $d = 13$ eigenvalues and we keep the first $k = 8$ of them, projecting the data onto $\text{span}\{v_1, \ldots, v_8\}$. Note that each $\lambda_i > \lambda_{i+1} > 0$.

Example 5.14 Suppose $k = 2$. Then each X_i is mapped to $(\lambda_1 v_1^T X_i, \lambda_2 v_2^T X_i)$.