Exercises from the textbook (Grinstead & Snell 2nd revised edition)

1. Section 3.1 (p.88) Ex. 5

2. Section 3.1 Ex. 6

3. Section 3.1 Ex. 7

4. Section 3.1 Ex. 8

5. Section 3.1 Ex. 12

6. Section 3.1 Ex. 15

7. Section 3.1 Ex. 17

8. For \(k \geq 0 \) and \(n \geq 1 \) denote by \(w_n^{(k)} \) the number of permutations \(^{1}\) in \(S_n \) that have exactly \(k \) fixed points. Note that \(w_n^{(0)} \) is the number \(w_n \) of \(n \)-derangements, which (as we have seen) satisfies \(w_n / n! \rightarrow 1/e \) as \(n \rightarrow \infty \). Show that

\[
 w_n^{(k)} = \binom{n}{k} \cdot w_{n-k}.
\]

Deduce from this formula that for any fixed \(k \geq 0 \), the probability that a random permutation in \(S_n \) (under the uniform distribution) has exactly \(k \) fixed points converges to the constant \(\frac{1}{e \cdot k!} \) as \(n \rightarrow \infty \).

\(^1\) \(S_n \) denotes the set of all \(n! \) permutations on the \(n \)-element set \(\{1, 2, \ldots, n\} \).