Formula sheet.

Identities for the probability of events:
- \(P(\overline{A}) = 1 - P(A) \) (where \(\overline{A} \) denotes the complement of \(A \)),
- \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \),
- \(P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) \) (\(A \cup B \) being the complement of \(\overline{A} \cap \overline{B} \)),
 and similarly \(P(A \cap B) = 1 - P(\overline{A} \cup \overline{B}) \)

Conditional probabilities:
- \(P(A|B) = \frac{P(A \cap B)}{P(B)} \) (for \(P(B) > 0 \)),
- \(A \) and \(B \) are called independent if \(P(A \cap B) = P(A) \cdot P(B) \),
- Bayes formula: for \(C_1, \ldots, C_m \) a partition of the sample space and for some event \(E \) with \(P(E) > 0 \), we have for every \(i \in \{1, \ldots, m\} \):
 \[
P(C_i|E) = \frac{P(E|C_i)P(C_i)}{\sum_{j=1}^{m} P(E|C_j)P(C_j)}.
\]

Random variables:
- For a random variable \(X \):
 - the probability mass function is \(P(X = x) \),
 - the expected value is \(E[X] = \sum_x xP(X = x) \),
 - the variance is \(V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2 \),
 and the standard deviation is \(D[X] = \sqrt{V[X]} \).

Table 1. Common Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(P(X = k))</th>
<th>(E[X])</th>
<th>(V[X])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin((n, p))</td>
<td>(\binom{n}{k}p^k(1-p)^{n-k})</td>
<td>(np)</td>
<td>(np(1-p))</td>
</tr>
<tr>
<td>Geom((p))</td>
<td>(p(1-p)^{k-1})</td>
<td>(1/p)</td>
<td>(\frac{1-p}{p^2})</td>
</tr>
<tr>
<td>Poisson((\lambda))</td>
<td>(e^{-\lambda}\lambda^k)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

Chebyshev’s inequality: For \(X \) a random variable of expected value \(\mu \) and for \(\epsilon > 0 \),
\[
P(|X - \mu| \geq \epsilon) \leq \frac{V[X]}{\epsilon^2}.
\]