a and b are coprime if their greatest common divisor is 1.

What is the probability that two integers "picked at random" are coprime? Let's call this P.

What is the probability that two integers have gcd 2?

We need: the first integer to be even

- probability $\frac{1}{2}$

the second integer to be even

once "divided out" by 2, the remaining integer to be coprime

P

So the overall probability is $\frac{P}{2^2}$.
The probability that two integers have \(\text{gcd} \) 3 is \(\frac{p}{3^2} \).

\[
1 = P + \frac{p}{2^2} + \frac{p}{3^2} + \frac{p}{4^2} + \ldots = P \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots \right).
\]

\[
P = \frac{1}{1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots}.
\]

Recall the approximation for \(\sin(x) \):

\[
\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.
\]
This can be extended ad infinitum.

\[\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \ldots \]

\[\frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \frac{x^8}{9!} - \frac{x^{10}}{11!} + \ldots \]

\[\frac{\sin(x)}{x} \text{ looks like:} \]

It has "roots" at \(\pi, -\pi, 2\pi, -2\pi, \frac{3\pi}{2}, -\frac{3\pi}{2}, \ldots \)

So we can write \[\frac{\sin(x)}{x} = \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \ldots \]

\[= \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{2^2\pi^2}\right)\left(1 - \frac{x^2}{3^2\pi^2}\right)\left(1 - \frac{x^2}{4^2\pi^2}\right) \ldots \]
In fact:

\[
\frac{\sin(x)}{x} = 1 + x^2 \left(\frac{-x^2}{2 \cdot 3 \cdot \pi^2} \right) + x^4 \left(\frac{-x^4}{2^2 \cdot 3^2 \cdot \pi^4} \right) + \ldots
\]

... one of the terms will be: \(1\left(\frac{-x^2}{2 \cdot 3 \cdot \pi^2}\right)\left(\frac{-x^2}{2 \cdot 3 \cdot \pi^2}\right)(1)(1)(1)\ldots = \frac{x^4}{2^2 \cdot 3^2 \cdot \pi^4} \ldots\)

... one of the terms will be \((1)(1)(\frac{-x^2}{2 \cdot 3 \cdot \pi^2})(\frac{-x^2}{3 \cdot 3 \cdot \pi^2})(1)(1)(\frac{-x^2}{2 \cdot 3 \cdot \pi^2})(1)(1)\ldots\)
\[
\frac{\pi^2}{6} = \frac{\pi^2}{6} - 1 + \frac{\pi^2}{4} + \frac{\pi^2}{16} + \cdots + \frac{\pi^2}{2^{n-1}} + \frac{\pi^2}{n^2} = 1 + \frac{\pi^2}{4} + \frac{\pi^2}{16} + \cdots + \frac{\pi^2}{2^{n-1}} + \frac{\pi^2}{n^2} - 1
\]

So \(P = 1 \)

\[
\frac{6}{\pi^2} = \left(\cdots + \frac{\pi^2}{4} + \frac{\pi^2}{16} + \cdots + \frac{\pi^2}{2^{n-1}} + \frac{\pi^2}{n^2} \right) \frac{6}{\pi^2} = \left(\cdots + \frac{\pi^2}{4} + \frac{\pi^2}{16} + \cdots + \frac{\pi^2}{2^{n-1}} + \frac{\pi^2}{n^2} \right) \frac{6}{\pi^2}
\]

We must have:

\[
\frac{\pi^2}{2} = \frac{6}{\pi^2} \left(\cdots + \frac{\pi^2}{4} + \frac{\pi^2}{16} + \cdots + \frac{\pi^2}{2^{n-1}} + \frac{\pi^2}{n^2} \right)
\]

But we already knew \(\pi^2 = 6 \).

\[
\left(\cdots - \frac{\pi^2}{4} + \frac{\pi^2}{16} - \cdots + \frac{\pi^2}{2^{n-1}} - \frac{\pi^2}{n^2} \right) \frac{\pi^2}{2} = \cdots - \frac{\pi^2}{4} + \frac{\pi^2}{16} - \cdots + \frac{\pi^2}{2^{n-1}} - \frac{\pi^2}{n^2} - \frac{\pi^2}{2}
\]

Thus the \(\frac{\pi^2}{2} \) term is cancelled.