ASSIGNMENT 5

Solutions

Let \(f(x) \) be continuous on \([l, r]\), \(f(l) < f(r) \), and \(L \in (f(l), f(r)) \) be a number between \(f(l) \) and \(f(r) \). In this assignment you will provide two different proofs that there exists a number \(a \in (l, r) \) such that \(f(a) = L \).

1. Consider the following algorithm.
 (a) Divide \([l, r]\) in half, and call the midpoint \(m \). If \(f(m) = L \), we are done. Otherwise, if \(f(m) > L \), let \([l, m]\) be the new interval, and if \(f(m) < L \), let \([m, r]\) be the new interval. Name the new interval \([l_1, r_1]\).
 (b) Divide \([l_1, r_1]\) in half, and call the midpoint \(m_1 \). If \(f(m_1) = L \), we are done. Otherwise, if \(f(m_1) > L \), let \([l_1, m_1]\) be the new interval, and if \(f(m_1) < L \), let \([m_1, r_1]\) be the new interval. Name the new interval \([l_2, r_2]\).
 (c) Repeat the process \(ad infinitum\), getting a sequence of nested intervals
 \[[l_1, r_1] \supset [l_2, r_2] \supset [l_3, r_3] \supset \cdots \]
 Explain carefully why \(\lim_{n \to \infty} f(l_n) = \lim_{n \to \infty} f(r_n) = L \).

First, the sequence \(\{l_n\} \) is increasing and bounded above (by \(r_1 \), say) which means it converges. Suppose it converges to a number \(c \in [l, r] \). By the continuity of \(f(x) \) on that interval, we have
\[\lim_{x \to c} f(x) = \lim_{n \to \infty} f(l_n) = f(c) \leq L, \]
with the last inequality following from the fact that \(f(l_n) < L \) for all \(n \). In a similar way, we may conclude that \(\{r_n\} \) converges to a number \(d \in [l, r] \), and
\[\lim_{x \to d} f(x) = \lim_{n \to \infty} f(r_n) = f(d) \geq L. \]
It remains to show only that \(c = d \). This follows from the fact that we are halving our intervals' length each iteration of the algorithm, whence
\[\lim_{n \to \infty} (r_n - l_n) = \lim_{n \to \infty} \frac{r - l}{2^n} = 0. \]
On the other hand, we also have
\[\lim_{n \to \infty} (r_n - l_n) = \lim_{n \to \infty} r_n - \lim_{n \to \infty} l_n = d - c. \]

2. Let \(S \) be the set of all \(x \in [l, r] \) such that \(f(x) \leq L \), and let \(a \) be the least upper bound of \(S \).
 (a) Prove by contradiction that \(f(a) \leq L \).
 (b) Prove by contradiction that \(f(a) \geq L \).

 (a) Suppose \(f(a) = M > L \). By the continuity of \(f(x) \), \(\lim_{x \to a} f(x) = M \), which means that there exists some \(\delta > 0 \) such that if \(x \in (a - \delta, a + \delta) \), then \(f(x) > L \). Taking just one of these \(x \)-values that is smaller than \(a \) — say \(a - \frac{\delta}{2} \) — contradicts the fact that \(a \) is the least upper bound on \(x \)-values such that \(f(x) \leq L \), since \(f \left(a - \frac{\delta}{2} \right) > L \).

 (b) Now suppose \(f(a) = K < L \). \(\lim_{x \to a} f(x) = K \), which means that there exists some \(\delta > 0 \) such that if \(x \in (a - \delta, a + \delta) \), then \(f(x) < L \). Taking just one of these \(x \)-values that is larger than \(a \) — say \(a + \frac{\delta}{2} \) — contradicts the fact that \(a \) is an upper bound on \(x \)-values such that \(f(x) \leq L \), since \(f \left(a + \frac{\delta}{2} \right) < L \).