Inverse Scattering

Suppose that we are interested in a system in which sound waves, for example, scatter off of some obstacle. Let \(p(x, t) \) be the pressure at position \(x \) and time \(t \). In (a somewhat idealized) free space, \(p \) obeys the wave equation
\[
\frac{\partial^2 p}{\partial t^2} = c^2 \Delta p,
\]
where \(c \) is the speed of sound. We shall assume that in most of the world, \(c \) takes a constant value \(c_0 \). But we introduce an obstacle by allowing \(c \) to depend on position in some compact region. We further allow for some absorption in that region. Then \(p \) obeys
\[
\frac{\partial^2 p}{\partial t^2} + \gamma(x) \frac{\partial p}{\partial t} = c(x)^2 \Delta p,
\]
where \(\gamma(x) \) is the damping coefficient of the medium at \(x \). For solutions of fixed (temporal) frequency, \(p(x, t) = \text{Re} \left[u(x) e^{-i\omega t} \right] \) with
\[
\Delta u + \frac{\omega^2}{c(x)^2} \left[1 + i \frac{\gamma(x)}{\omega} \right] u = 0
\]
Outside of some compact region
\[
\frac{\omega^2}{c(x)^2} \left[1 + i \frac{\gamma(x)}{\omega} \right] = \frac{\omega^2}{c_0^2} = k^2 \quad \text{where} \quad k = \frac{\omega}{c_0} > 0
\]
If we define the index of refraction by
\[
n(x) = \frac{c_0^2}{c(x)^2} \left[1 + i \frac{\gamma(x)}{\omega} \right]
\]
then
\[
\Delta u + k^2 n(x) u = 0 \quad (1)
\]
with \(n(x) = 1 \) outside of some compact region. We first consider two special cases.

Example 1 (Free Space) In the absence of any obstacle \(\Delta u + k^2 u = 0 \) on all of \(\mathbb{R}^3 \). Then we can solve just by Fourier transforming. The general solution is a mixture of solutions of the form \(u = e^{i k \hat{\theta} \cdot x} \) where \(\hat{\theta} \) is a unit vector. This represents a plane wave coming in from infinity in direction \(\hat{\theta} \).

Example 2 (Point Source) If we have free space everywhere except at the origin and we have a unit point source at the origin, then
\[
\Delta u + k^2 u = \delta(x)
\]
Except at the origin, where there is a singularity, we still have \(\Delta u + k^2 u = 0 \). The point source generates expanding spherical waves. So \(u \) should be a function of \(r = |x| \) only and obey

\[
u''(r) + \frac{2}{r}u'(r) + k^2 u(r) = 0
\]

This is easily solved by changing variables to \(v(r) = ru(r) \), which obeys

\[
v''(r) + k^2 v(r) = 0
\]

So \(v(r) = \alpha \sin(kr) + \beta \cos(kr) \) and \(u(r) = \alpha \frac{\sin(kr)}{r} + \beta \frac{\cos(kr)}{r} \). To be an outgoing (rather than incoming) wave \(u(r) = \alpha' e^{ikr} \). (Note that \(e^{ikr}e^{-i\omega t} \) is constant on \(r = \frac{\omega}{k} t \), which is a sphere that is expanding with speed \(c_0 \).) To give the Dirac delta function on the right hand side of \(\Delta u + k^2 u = \delta(x) \) coefficient one, we need \(u(x) = -\frac{e^{ik|x|}}{4\pi|x|} \). (See, for example, the notes on Poisson’s equation.)

Now let’s return to the general case. We want to think of a physical situation in which we send a plane wave \(u^i(x) = e^{ik\hat{\theta} \cdot \hat{x}} \) in from infinity. This plane wave shakes up the obstacle which then emits a bunch of expanding spherical waves \(e^{ik|x-y|/|x-y|} \) emanating from various points \(y \) in the obstacle. So the full solution is of the form

\[
u(x) = u^i(x) + u^s(x)
\]

where the scattered wave, \(u^s \), obeys the “radiation condition”

\[
\frac{\partial}{\partial r} u^s(x) -iku^s(x) = O\left(\frac{1}{|x|^2}\right) \quad \text{as} \quad |x| \to \infty
\]

This condition is chosen to allow outgoing waves \(e^{ik|x-y|/|x-y|} \) but not incoming waves \(e^{-ik|x-y|/|x-y|} \).

Define

\[
\Phi(x, y) = \frac{e^{ik|x-y|}}{4\pi|x-y|}
\]

Since \(\delta(x - y) \) is the kernel of the identity operator,

\[
(\Delta_x + k^2)\Phi(x, y) = -\delta(x - y)
\]

says, roughly, that \(u(x) \mapsto -\int \Phi(x, y)u(y) \, dy \) is the inverse of the map \(u(x) \mapsto (\Delta + k^2)u(x) \) for functions that obey the radiation condition. We can exploit this to convert (1), (2) into an equivalent integral equation

\[
\Delta u + k^2 n(x)u = 0 \quad \implies \quad \Delta u + k^2 u = k^2 (1 - n(x))u
\]

\[
\implies \quad \Delta u^s + k^2 u^s = k^2 (1 - n(x))u
\]
since \(\Delta u^i + k^2 u^i = 0 \). As \(u^s \) obeys the radiation condition

\[
\begin{align*}
 u^s(x) &= -k^2 \int \Phi(x, y)(1 - n(y))u(y) \, dy
\end{align*}
\]

so that

\[
\begin{align*}
 u(x) &= u^i(x) - k^2 \int (1 - n(y))\Phi(x, y)u(y) \, dy
\end{align*}
\]

This is called the Lippmann–Schwinger equation. Observe that it is of the form \(u = u^i - Fu \) or \((\mathbb{I} - F)u = u^i\) where \(F \) is the linear operator \(u(x) \mapsto k^2 \int \Phi(x, y)(1 - n(y))u(y) \, dy \). This operator is compact (if you impose the appropriate norms) and so behaves much like a finite dimensional matrix. If \(F \) has operator norm smaller than one, which is the case if \(k^2(1 - n) \) is small enough, then \(\mathbb{I} - F \) is trivially invertible and the equation \((\mathbb{I} - F)u = u^i \) has a unique solution. Even if \(F \) has operator norm larger than or equal to one, \((\mathbb{I} - F)u = u^i \) fails to have a unique solution only if \(F \) has eigenvalue one. One can show that this is impossible in the present setting. Thus, one can prove

Theorem. If \(n \in C^2(\mathbb{R}^3) \), \(n(x) - 1 \) has compact support and \(\text{Re} \, n(x), \text{Im} \, n(x) \geq 0 \), then (1), (2) has a unique solution.

For large \(|x| \), \(\Phi \) has the asymptotic behaviour

\[
\Phi(x, y) = \frac{e^{ik|x|}}{4\pi|x|} e^{-ik\hat{x} \cdot y} + O\left(\frac{1}{|x|^2}\right)
\]

so that, when the incoming plane wave is moving in direction \(\hat{\theta} \),

\[
\begin{align*}
 u(x; \hat{\theta}) &= u^i(x; \hat{\theta}) + \frac{e^{ik|x|}}{4\pi|x|} u_\infty(\hat{x}; \hat{\theta}) + O\left(\frac{1}{|x|^2}\right)
\end{align*}
\]

where

\[
\begin{align*}
 u_\infty(\hat{x}; \hat{\theta}) &= -k^2 \int e^{-ik\hat{x} \cdot y} (1 - n(y))u(y; \hat{\theta}) \, dy
\end{align*}
\]

If we are observing the scattered wave from vantage points far from the obstacle, we will only be able to measure \(u_\infty(\hat{x}; \hat{\theta}) \). The inverse problem then is

Question: Given \(u_\infty(\hat{x}; \hat{\theta}) \), for all \(\hat{x}, \hat{\theta} \in S^2 \), can we determine \(n \)? The short answer is

Answer: Yes, because we have the

Theorem. If \(n_1, n_2 \in C^2(\mathbb{R}^3) \) with \(n_1 - 1, n_2 - 1 \) of compact support and

\[
\begin{align*}
 u_{1, \infty}(\hat{x}; \hat{\theta}) &= u_{2, \infty}(\hat{x}; \hat{\theta}), \quad \text{for all } \hat{x}, \hat{\theta} \in S^2, \quad \text{then } n_1 = n_2.
\end{align*}
\]

We can get a rough idea why this Theorem is true by looking at the Born approximation. In this approximation \(u^s \) is ignored in the computation of \(u_\infty \) so that

\[
\begin{align*}
 u_\infty(\hat{x}; \hat{\theta}) &\approx -k^2 \int e^{-ik\hat{x} \cdot y} (1 - n(y))u^i(y; \hat{\theta}) \, dy
\end{align*}
\]

\[
= -k^2 \int e^{-ik(\hat{x} - \hat{\theta}) \cdot y} (1 - n(y)) \, dy
\]
If we measure $u_\infty(\hat{x}; \hat{\theta})$, then, in this approximation, we know the Fourier transform of $1 - n(y)$ on the set \(\{ k(\hat{x} - \hat{\theta}) \mid \hat{x}, \hat{\theta} \in S^2 \} \) which is exactly the closed ball of radius $2k$ centered on the origin in \mathbb{R}^3. Since $1 - n(y)$ is of compact support, its Fourier transform is analytic. So knowledge of the Fourier transform on any open ball uniquely determines it.

References