Another Riesz Representation Theorem

In these notes we prove (one version of) a theorem known as the Riesz Representation Theorem. Some people also call it the Riesz–Markov Theorem. It expresses positive linear functionals on $C(X)$ as integrals over X. For simplicity, we will here only consider the case that X is a compact metric space. We denote the metric $d(x, y)$. For more general versions of the theorem see

- H. L. Royden, Real Analysis, Macmillan, chapter 13, sections 4 and 5.

The background definitions that we need are

Definition 1 A map $\ell : C(X) \to \mathbb{C}$ is a positive linear functional if

(a) $\ell(\alpha \varphi + \beta \psi) = \alpha \ell(\varphi) + \beta \ell(\psi)$ for all $\alpha, \beta \in \mathbb{C}$ and all $\varphi, \psi \in C(X)$ and

(b) $\ell(\varphi) \geq 0$ for all $\varphi \in C(X)$ that obey $\varphi(x) \geq 0$ for all $x \in X$.

Problem 1 Let $\ell : C(X) \to \mathbb{C}$ be a positive linear functional. Prove that

$$|\ell(\varphi)| \leq \ell(1) \|\varphi\|_{C(X)}$$

for all $\varphi \in C(X)$. Here 1 is of course the function on X that always takes the value 1.

Definition 2

(a) The set, \mathcal{B}_X, of Borel subsets of X is the smallest σ–algebra that contains all open subsets of X.

(b) A Borel measure on X is a measure $\mu : \mathcal{B}_X \to [0, \infty]$.

(c) A Borel measure, μ on X is said to be regular if

(i) $\mu(A) = \inf \{ \mu(O) \mid A \subset O, \ O \text{ open} \}$

(ii) $\mu(A) = \sup \{ \mu(C) \mid C \subset A, \ C \text{ compact} \}$

for all $A \in \mathcal{B}_X$.

We shall prove

© Joel Feldman. 2009. All rights reserved. October 8, 2009 Another Riesz Representation Theorem 1
Theorem 3 (Riesz Representation) Let X be a compact metric space. If $\ell : C(X) \to \mathbb{C}$ is a positive linear functional on $C(X)$, then there exists a unique regular Borel measure μ on X such that

$$\ell(f) = \int f(x) \, d\mu(x)$$

The measure μ is finite.

By way of motivation for the proof, let's guess what the measure is. To do so, we assume that $\ell(f) = \int f(x) \, d\mu(x)$ and derive a formula for μ in terms of ℓ. We start off by considering any open $O \subset X$. Of course $\mu(O) = \int_X \chi_O(x) \, d\mu(x)$. As χ_O is not continuous, we cannot express $\mu(O) = \ell(\chi_O)$. But we can express χ_O as a limit of continuous functions. For each $n \in \mathbb{N}$, set

$$f_n(x) = \begin{cases} 0 & \text{if } x \in X \setminus O \\ n \, d(x, X \setminus O) & \text{if } x \in O \text{ and } d(x, X \setminus O) \leq \frac{1}{n} \\ 1 & \text{if } x \in O \text{ and } d(x, X \setminus O) \geq \frac{1}{n} \end{cases}$$

This is a sequence of continuous functions on X with $0 \leq f_n(x) \leq 1$ for all $n \in \mathbb{N}$ and $x \in X$. Because O is open, $d(x, X \setminus O) > 0$ for all $x \in O$ and $\lim_{n \to \infty} f_n(x) = \chi_O(x)$ for all $x \in X$. So by the dominated convergence theorem (or, if you prefer, the monotone convergence theorem)

$$\mu(O) = \lim_{n \to \infty} \ell(f_n)$$

Of course, this only determines μ on open sets. But if μ is regular, it is completely determined by its values on opens sets. We are now ready to start the proof itself.

Define, for any open set $O \subset X$,

$$\mu^*(O) = \sup \left\{ \ell(f) \mid f \in C(X), \, f \upharpoonright X \setminus O = 0, \, 0 \leq f(x) \leq 1 \text{ for all } x \in X \right\}$$

and, for any $A \subset X$,

$$\mu^*(A) = \inf \left\{ \mu^*(O) \mid O \subset X, \, O \text{ open }, \, A \subset O \right\}$$

Lemma 4

(a) μ^* is a well-defined outer measure on X with $\mu^*(A) \leq \ell(1)$ for all $A \subset X$.

(b) $\mu^*(A) = \inf \left\{ \mu^*(O) \mid O \subset X, \, O \text{ open }, \, A \subset O \right\}$ for all $A \subset X$.

(c) If $O \subset X$ is open, then O is measurable.

(d) If $U \subset X$ is Borel, then U is measurable.

(e) If $A \subset X$ is measurable, then $\mu^*(A) = \sup \left\{ \mu^*(C) \mid C \subset A, \, C \text{ compact } \right\}$.

© Joel Feldman. 2009. All rights reserved. October 8, 2009 Another Riesz Representation Theorem
Proof: (a) This follows almost directly from the definitions and the fact that, since \(\ell \) is a positive linear functional, \(0 \leq \ell(f) \leq \ell(1) \) for any function \(f \in C(X) \) that obeys \(0 \leq f(x) \leq 1 \) for all \(x \in X \).

(b) This is of course part of the definition of \(\mu^* \).

(c) Recall that, by definition, \(\mathcal{O} \subset X \) is measurable with respect to \(\mu^* \) if we have \(\mu^*(A) = \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O})) \) for all \(A \subset X \). So let \(A \subset X \). That \(\mu^*(A) \leq \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O})) \) is part of the definition of “outer measure”. So it suffices to prove that, for any \(\varepsilon > 0 \),

\[
\mu^*(A) \geq \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O})) - \varepsilon
\]

So fix any \(\varepsilon > 0 \). The definition of \(\mu^* \) is more direct when applied to open sets than to general sets, so we start by using the following argument to replace the general set \(A \) with an open set \(\tilde{A} \). By the definition of \(\mu^*(A) \), there is an open set \(\tilde{A} \subset X \) such that \(A \subset \tilde{A} \) and \(\mu^*(A) \geq \mu^*(\tilde{A}) - \frac{\varepsilon}{2} \). As \(A \subset \tilde{A} \), we have that \(\mu^*(\tilde{A} \cap \mathcal{O}) \geq \mu^*(A \cap \mathcal{O}) \) and \(\mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \geq \mu^*(A \cap (X \setminus \mathcal{O})) \). So it suffices to prove that

\[
\mu^*(\tilde{A}) \geq \mu^*(\tilde{A} \cap \mathcal{O}) + \mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) - \frac{\varepsilon}{2}
\]

Here is the idea of the rest of the proof. We are going to construct three continuous functions \(f_1, f_2, f_3 : X \to [0, 1] \) and an open set \(\tilde{\mathcal{O}}^c \) that contains, but is only a tiny bit bigger than \(X \setminus \mathcal{O} \) (remember that \(\tilde{A} \cap (X \setminus \mathcal{O}) \) is not open), such that

\[
\begin{align*}
\mu^*(\tilde{A} \cap \mathcal{O}) &\leq \ell(f_1) + \frac{\varepsilon}{4} \quad f_1 \text{ nonzero only on } \tilde{A} \cap \mathcal{O} \\
\mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) &\leq \ell(f_2) + \frac{\varepsilon}{4} \quad f_2 \text{ nonzero only on } \tilde{A} \cap \tilde{\mathcal{O}}^c \\
f_3 &= f_1 + f_2
\end{align*}
\]

Once we have succeeded in doing so, we have finished, since then \(f_3 \) is nonzero only on \(\tilde{A} \), takes values in \([0, 1]\) and is continuous so that

\[
\mu^*(\tilde{A} \cap \mathcal{O}) + \mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \leq \ell(f_1 + f_2) + \frac{\varepsilon}{2} = \ell(f_3) + \frac{\varepsilon}{2} \leq \mu^*(\tilde{A}) + \frac{\varepsilon}{2}
\]

So we now only have to construct \(f_1, f_2, f_3 \) and \(\tilde{\mathcal{O}}^c \). The principal hazard that we must avoid arises from the fact that \(\mathcal{O} \) and \(\tilde{\mathcal{O}}^c \) overlap a bit. So there is a danger that \(f_1 + f_2 \) is larger than \(1 \) somewhere on \(\mathcal{O} \cap \tilde{\mathcal{O}}^c \). Fortunately, \(f_1 \) is zero on \(X \setminus \mathcal{O} \) and all of \(\mathcal{O} \cap \tilde{\mathcal{O}}^c \) is very close to \(X \setminus \mathcal{O} \), so \(f_1 \) is very small on \(\mathcal{O} \cap \tilde{\mathcal{O}}^c \). Here are the details.

Since \(\tilde{A} \cap \mathcal{O} \) is open, the definition of \(\mu^*(\tilde{A} \cap \mathcal{O}) \) implies that there is a continuous function \(F_1 : X \to [0, 1] \) that is nonzero only on \(\tilde{A} \cap \mathcal{O} \) and obeys \(\mu^*(\tilde{A} \cap \mathcal{O}) \leq \ell(F_1) + \frac{\varepsilon}{5} \). Since \(\ell(F_1) \leq \ell(1) < \infty \), we can pick a \(\delta > 0 \) such that \(\frac{\delta}{1+\delta} \ell(1) \leq \frac{\varepsilon}{20} \). Set \(f_1 = \frac{F_1}{1+\delta} \). Then

\[
\mu^*(\tilde{A} \cap \mathcal{O}) \leq \ell(F_1) + \frac{\varepsilon}{5} = \frac{1+\delta}{1+\delta} \ell(F_1) + \frac{\delta}{1+\delta} \ell(F_1) + \frac{\varepsilon}{5} \leq \ell(f_1) + \frac{\varepsilon}{4}
\]
Since \(F_1 \) is continuous and vanishes on \(X \setminus (\tilde{A} \cap \mathcal{O}) \), there is an open neighbourhood \(\tilde{O}^c \) of \(X \setminus (\tilde{A} \cap \mathcal{O}) \supset X \setminus \mathcal{O} \) such that \(F_1(x) \leq \delta \) for \(x \in \tilde{O}^c \). Since \(\tilde{A} \cap \tilde{O}^c \) is open, the definition of \(\mu^*(\tilde{A} \cap \tilde{O}^c) \) implies that there is a continuous function \(F_2 : X \to [0,1] \) that is nonzero only on \(\tilde{A} \cap \tilde{O}^c \) and obeys
\[
\mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \leq \mu^*(\tilde{A} \cap \tilde{O}^c) \leq \ell(F_2) + \frac{\xi}{5} = \frac{1}{1+\delta} \ell(F_2) + \frac{\delta}{1+\delta} \ell(F_2) + \frac{\xi}{5} \leq \frac{1}{1+\delta} \ell(F_2) + \frac{\xi}{4}
\]
Set \(f_2 = \frac{F_2}{1+\delta} \) and \(f_3 = f_1 + f_2 \). It remains only to verify that \(0 \leq f_3(x) \leq 1 \), This follows from (see the figure below) the facts that
- \(f_1 \) is nonzero at most on \(\tilde{A} \cap \mathcal{O} \) and \(f_2 \) is nonzero at most on \(\tilde{A} \cap \tilde{O}^c \)
- on \((\tilde{A} \cap \mathcal{O}) \cap \tilde{O}^c \), we have \(F_1 \leq \delta \) and \(F_2 \leq 1 \) so that \(f_3 = \frac{F_1}{1+\delta} + \frac{F_2}{1+\delta} \leq \frac{\delta}{1+\delta} + \frac{1}{1+\delta} = 1 \).
- on \((\tilde{A} \cap \mathcal{O}) \setminus \tilde{O}^c \), we have \(f_1 \leq 1 \) and \(f_2 = 0 \)
- on \(\tilde{O}^c \setminus (\tilde{A} \cap \mathcal{O}) \), we have \(f_1 = 0 \) and \(f_2 \leq 1 \)

(d) By Carathéodory’s theorem, the set of all measurable sets is always a \(\sigma \)-algebra. In our case it contains all open sets and hence must contain all Borel sets.

(e) Let \(A \subset X \) be measurable. Then
\[
\mu^*(A) = \mu^*(X) - \mu^*(X \setminus A) = \mu^*(X) - \inf\{ \mu^*(\mathcal{O}) \mid \mathcal{O} \subset X, \, \mathcal{O} \text{ open }, \, X \setminus A \subset \mathcal{O} \} = \mu^*(X) - \inf\{ \mu^*(X) - \mu^*(X \setminus \mathcal{O}) \mid X \setminus \mathcal{O} \text{ compact }, \, X \setminus \mathcal{O} \subset A \} = \sup\{ \mu^*(C) \mid C \subset A, \, C \text{ compact } \}
\]

Proof of Theorem 3: Define \(\mu \) to be the restriction of \(\mu^* \) to the Borel sets. By Carathéodory’s theorem, \(\mu \) is a measure. By parts (b) and (d) of Lemma 4, it is a regular Borel measure. Since \(\mu(X) = \mu^*(X) = \ell(1) \), it is a finite measure. That \(\ell(f) = \int f(x) \, d\mu(x) \) is proven in Lemma 5, below.

That just leaves the uniqueness. If \(\nu \) is a regular Borel measure and \(\ell(f) = \int f(x) \, d\nu(x) \) for all \(f \in C(X) \), then we must have
\[
\nu^*(\mathcal{O}) = \sup\{ \ell(f) \mid f \in C(X), \, f \mid X \setminus \mathcal{O} = 0, \, 0 \leq f(x) \leq 1 \text{ for all } x \in X \} = \mu^*(\mathcal{O})
\]
for all open sets \(\mathcal{O} \). This was proven in the motivation leading up to the definition of \(\mu^* \). The regularity of \(\nu \) the forces \(\nu(A) = \mu^*(A) \) for all Borel sets \(A \).
Lemma 5 If $f \in C(X)$, then

$$\ell(f) = \int f(x) \, d\mu(x)$$

Proof: We first observe that it suffices to prove that $\ell(f) \leq \int f(x) \, d\mu(x)$ for all real-valued $f \in C(X)$. (Then $\ell(-f) \leq \int (-f)(x) \, d\mu$ too, so that $\ell(f) = \int f(x) \, d\mu(x)$ for all real-valued $f \in C(X)$.) We then observe that, since $\mu(X) = \ell(1) < \infty$, it suffices to consider $f \geq 0$. (Otherwise replace f by $f + \|f\|_\infty$)

So fix any nonnegative $f \in C(X)$ and any $n \in \mathbb{N}$. Define, for each $m \in \mathbb{N}$,

$$B_m = f^{-1}\left(\left[\frac{m-1}{n}, \frac{m}{n}\right]\right)$$

This B_m is the intersection of $f^{-1}\left(\left[\frac{m-1}{n}, \infty\right)\right)$, which is closed, and $f^{-1}\left(\left(-\infty, \frac{m}{n}\right]\right)$, which is open. So B_m is Borel. Since f is bounded, there is an $N \in \mathbb{N}$ such that $B_m = \emptyset$ for all $m > N$. For each $1 \leq m \leq N$, there is an open set $O_m \subset X$ such that $B_m \subset \mathcal{O}_m$, $\mu(B_m) \geq \mu(O_m) - \frac{1}{nN}$ and $0 \leq f \upharpoonright \mathcal{O}_m \leq \frac{m+1}{n}$, since μ is regular and f is continuous. Again, for each $1 \leq m \leq N$, define

$$h_m(y) = \frac{d(y, X \setminus \mathcal{O}_m)}{\sum_{m'=1}^{N} d(y, X \setminus \mathcal{O}_{m'})}$$

and observe that

$$h_m \in C(X) \quad 0 \leq h_m \leq 1 \quad h_m(y) \neq 0 \iff y \in \mathcal{O}_m \quad \sum_{m=1}^{N} h_m(y) = 1$$

In particular, the denominator $\sum_{m'=1}^{N} d(y, X \setminus \mathcal{O}_{m'})$ never vanishes because each $y \in X$ is in $\mathcal{O}_{m'}$ for some $1 \leq m' \leq N$. (So $\{h_m\}_{1 \leq m \leq N}$ is a partition of unity. The only reason that it isn’t subordinate to the open cover $\{\mathcal{O}_m\}_{1 \leq m \leq N}$ is that the support of h_m is $\overline{\mathcal{O}_{m'}}$.)

Hence

$$\ell(f) = \sum_{m=1}^{N} \ell(h_m f) \leq \sum_{m=1}^{N} \frac{m+1}{n} \ell(h_m) \leq \sum_{m=1}^{N} \frac{m+1}{n} \mu(\mathcal{O}_m) \leq \sum_{m=1}^{N} \frac{m+1}{n} \left[\mu(B_m) + \frac{1}{nN}\right]$$

$$= \sum_{m=1}^{N} \frac{m-1}{n} \mu(B_m) + \frac{2}{n} \sum_{m=1}^{N} \mu(B_m) + \sum_{m=1}^{N} \frac{m+1}{nN}$$

$$\leq \int f(x) \, d\mu(x) + \frac{2}{n} \mu(X) + \max_{1 \leq m \leq N} \frac{m+1}{n^2}$$

$$\leq \int f(x) \, d\mu(x) + \frac{2}{n} \mu(X) + \frac{1}{n}(\|f\|_\infty + \frac{1}{n})$$

For the first inequality we used the assumption that ℓ is positive. As (1) is true for all $n \in \mathbb{N}$, we have that $\ell(f) \leq \int f(x) \, \mu(x)$. □