Families of Commuting Normal Matrices

Definition M.1 (Commuting) Two \(n \times n \) matrices \(A \) and \(B \) are said to commute if \(AB = BA \).

Definition M.2 (Adjoint) The adjoint of the \(r \times c \) matrix \(A \) is the \(c \times r \) matrix

\[
A_{i,j}^* = \overline{A_{j,i}}
\]

Here \(\overline{A_{j,i}} \) is the complex conjugate of \(A_{j,i} \).

Problem M.1 Let \(A \) and \(B \) be any \(n \times n \) matrices. Prove that \(B = A^* \) if and only if \(\langle Bv, w \rangle = \langle v, Aw \rangle \) for all \(v, w \in \mathbb{C}^n \). Here \(\langle v, w \rangle = \sum_{j=1}^{n} \overline{v_j}w_j \) is the inner product of the vectors \(v = (v_1, \ldots, v_n) \) and \(w = (w_1, \ldots, w_n) \).

Problem M.2 Let \(A \) be any \(n \times n \) matrix. Let \(V \) be any linear subspace of \(\mathbb{C}^n \) and \(V^\perp \) its orthogonal complement. Prove that if \(AV \subset V \) (i.e. \(w \in V \Rightarrow Aw \in V \)), then \(A^*V^\perp \subset V^\perp \).

Definition M.3 (Normal, Self–Adjoint, Unitary)

i) An \(n \times n \) matrix \(A \) is normal if \(AA^* = A^*A \). That is, if \(A \) commutes with its adjoint.

ii) An \(n \times n \) matrix \(A \) is self–adjoint if \(A = A^* \).

iii) An \(n \times n \) matrix \(U \) is unitary if \(U^*U = \mathbb{I} \). Here \(\mathbb{I} \) is the \(n \times n \) identity matrix. Its \((i,j) \) matrix element is one if \(i = j \) and zero otherwise.

Problem M.3 Let \(A \) be a normal matrix. Let \(\lambda \) be an eigenvalue of \(A \) and \(V \) the eigenspace of \(A \) of eigenvalue \(\lambda \). Prove that \(V \) is the eigenspace of \(A^* \) of eigenvalue \(\overline{\lambda} \).

Problem M.4 Let \(A \) be a normal matrix. Let \(v \) and \(w \) be eigenvectors of \(A \) with different eigenvalues. Prove that \(v \perp w \).

Problem M.5 Let \(A \) be a self-adjoint matrix. Prove that

a) \(A \) is normal

b) Every eigenvalue of \(A \) is real.
Problem M.6 Let U be a unitary matrix. Prove that

a) U is normal

b) Every eigenvalue λ of U obeys $|\lambda| = 1$, i.e. is of modulus one.

The main result in these notes is

Theorem M.4 Let $n \geq 1$ be an integer. Let \mathcal{F} be a nonempty set of $n \times n$ mutually commuting normal matrices. That is, $A, B \in \mathcal{F} \Rightarrow AB = BA$ and $A \in \mathcal{F} \Rightarrow AA^* = A^*A$. Then there exists an orthonormal basis $\{e_1, \ldots, e_n\}$ of \mathbb{C}^n such that e_j is an eigenvector of A for every $A \in \mathcal{F}$ and every $1 \leq j \leq n$.

The proof uses two lemmas.

Lemma M.5 Let V be a linear subspace of \mathbb{C}^n of dimension at least one. Let A be an $n \times n$ matrix that maps V into V. Then A has an eigenvector in V.

Proof: Let e_1, \ldots, e_d be a basis for V. As A maps V into itself, there exist numbers $a_{i,j}$, $1 \leq i, j \leq d$ such that

$$Ae_j = \sum_{i=1}^{d} a_{i,j} e_i \quad \text{for all } 1 \leq j \leq d$$

Consequently, A maps the vector $w = \sum_{j=1}^{d} x_j e_j \in V$ to

$$Aw = \sum_{i,j=1}^{d} a_{i,j} x_j e_i$$

so that w is an eigenvector of A of eigenvalue λ if and only if (1) not all of the x_i’s are zero and (2)

$$\sum_{i,j=1}^{d} a_{i,j} x_j e_i = \lambda \sum_{i=1}^{d} x_i e_i \iff \sum_{j=1}^{d} a_{i,j} x_j = \lambda x_i \quad \text{for all } 1 \leq i \leq d$$

$$\iff \sum_{j=1}^{d} (a_{i,j} - \lambda \delta_{i,j}) x_j = 0 \quad \text{for all } 1 \leq i \leq d$$

For any given λ, the linear system of equations “$\sum_{j=1}^{d} (a_{i,j} - \lambda \delta_{i,j}) x_j = 0$ for all $1 \leq i \leq d$” has a nontrivial solution (x_1, \ldots, x_d) if and only if the $d \times d$ matrix $[a_{i,j} - \lambda \delta_{i,j}]_{1 \leq i, j \leq d}$ fails to be invertible and this, in turn, is the case if and only if $\det [a_{i,j} - \lambda \delta_{i,j}] = 0$. But $\det [a_{i,j} - \lambda \delta_{i,j}] = 0$ is a polynomial of degree d in λ and so always vanishes for at least one value of λ. ■
Lemma M.6 Let \(n \geq 1 \) be an integer, \(V \) be a linear subspace of \(\mathbb{C}^n \) of dimension at least one and let \(\mathcal{F} \) be a nonempty set of \(n \times n \) mutually commuting matrices that map \(V \) into \(V \). That is, \(A, B \in \mathcal{F} \Rightarrow AB = BA \) and \(A \in \mathcal{F}, \ w \in V \Rightarrow Aw \in V \). Then there exists a nonzero vector \(v \in V \) that is an eigenvector for every matrix in \(\mathcal{F} \).

Proof: We shall show that

“There is a linear subspace \(W \) of \(V \) of dimension at least one, such that each \(A \in \mathcal{F} \) is a multiple of the identity matrix when restricted to \(W \).”

This suffices to prove the lemma. The proof will be by induction on the dimension \(d \) of \(V \). If \(d = 1 \), we may take \(W = V \), since the restriction of any matrix to a one dimensional vector space is a multiple of the identity.

Suppose that the claim has been proven for all dimensions strictly less than \(d \). If every \(A \in \mathcal{F} \) is a multiple of the identity, when restricted to \(V \), we may take \(W = V \) and we are done. If not, pick any \(A \in \mathcal{F} \) that is not a multiple of the identity when restricted to \(V \). By Lemma M.5, it has at least one eigenvector \(v \in V \). Let \(\lambda \) be the corresponding eigenvalue and set

\[
V' = V \cap \{ \ w \in \mathbb{C}^n \mid Aw = \lambda w \} \]

Then \(V' \) is a linear subspace of \(V \) of dimension strictly less than \(d \) (since \(A \), restricted to \(V \), is not \(\lambda I \)). We claim that every \(B \in \mathcal{F} \) maps \(V' \) into \(V' \). To see this, let \(B \in \mathcal{F} \) and \(w \in V' \) and set \(w' = Bw \). We wish to show that \(w' \in V' \). But

\[
Aw' = ABw = BAw \quad (A \text{ and } B \text{ commute})
\]

\[
= B\lambda w \quad \text{(Definition of } V')
\]

\[
= \lambda Bw = \lambda w'
\]

so \(w' \) is indeed in \(V' \). We have verified that \(V' \) has dimension at least one and strictly smaller than \(d \) and that every \(B \in \mathcal{F} \) maps \(V' \) into \(V' \). So we may apply the inductive hypothesis with \(V \) replaced by \(V' \).

Proof of Theorem M.4: By Lemma M.6, with \(V = \mathbb{C}^n \), there exists a nonzero vector \(v_1 \) that is an eigenvector for every \(A \in \mathcal{F} \). Set \(e_1 = \frac{v_1}{\|v_1\|} \) and \(V_1 = \{ \lambda e_1 \mid \lambda \in \mathbb{C} \} \). By Problem M.3, \(e_1 \) is also an eigenvector of \(A^* \) for every \(A \in \mathcal{F} \), so \(A^*V_1 \subset V_1 \) for all \(A \in \mathcal{F} \). By Problem M.2, \(AV_1^\perp \subset V_1^\perp \) for all \(A \in \mathcal{F} \).

By Lemma M.6, with \(V = V_1^\perp \), there exists a nonzero vector \(v_2 \in V_1^\perp \) that is an eigenvector for every \(A \in \mathcal{F} \). Choose \(e_2 = \frac{v_2}{\|v_2\|} \). As \(e_2 \in V_1^\perp \), \(e_2 \) is orthogonal to \(e_1 \). Define \(V_2 = \{ \lambda_1 e_1 + \lambda_2 e_2 \mid \lambda_1, \lambda_2 \in \mathbb{C} \} \). By Problem M.3, \(e_2 \) is also an eigenvector of \(A^* \) for every \(A \in \mathcal{F} \), so \(A^*V_2 \subset V_2 \) for all \(A \in \mathcal{F} \). By Problem M.2, \(AV_2^\perp \subset V_2^\perp \) for all \(A \in \mathcal{F} \).
By Lemma M.6, with $V = V_2^\perp$, there exists a nonzero vector $v_3 \in V_2^\perp$ that is an eigenvector for every $A \in \mathcal{F}$. Choose $e_3 = \frac{v_3}{\|v_3\|}$. As $e_3 \in V_2^\perp$, e_3 is orthogonal to both e_1 and e_2. And so on. ■