Torus Geodesics

Let 0 < p < R be constants. The surface in IR* whose equation in cylindrical coordi-
nates is

(r—R)?>+ 2% = p?

is a torus, which we shall call M. Use as coordinates on M two angles 6 and ¢ determined
by z

x=(R+pcosp)cost y=(R+pcosp)sind z=psinyp ©

xT

By way of a check, observe that r = R + pcosy and z = psinp obey the equation
(r — R)? + 22 = p2. For any curve on M

i(t) = —p(t) psing(t) cos(t) — O(t) (R+ pcosp(t))sinb(t)
J(t) = —p(t) psinp(t) sind(t) + 0(t) (R+ pcosp(t)) cosb(t)
£(t) = &(t) peosp(t)
Thus
B2+ (1) + 2()2 = p*¢(1)* + (R + peos p(1)) 6(t)?

and the Lagrangian for free motion on M is L(6, ¢, vy, v,) = %pQUQ + L(R+ pcosp)?v
The 6 Euler-Lagrange equation is

4 (L (000, 0(0),0(0), £(1)) ) = 35 (6(0), 9(6),0(0), £(1))
- ((R-l—pcosgp( ))29( ))
— (R+ pcos gp(t)) 0(t) = pg, constant (ELy)

The ¢ Euler-Lagrange equation is

2 (22 (0(1). (), 6(1). 5(1) ) = G (6(1), (1), 01t), (1))
2 —p(R + peosp(t)) sin p(t) 0(t)?
—p(R+ peosp(t)) " sinp(t) pf (EL,)

= p (1)
= p*$(t)
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By conservation of energy

1p20(t)? + %(R + pcos gp(t)) 0(t)? = E, constant
= 30°(t)" = E — 3(R+ pcosp(t)~*pj (E)

Observe that, by making appropriate choices of initial conditions, we may achieve any
value of py € R. (For example, we could choose 8(0) = ¢(0) = 0, ¢(0) = 0 and §(0) =
Ri5yz-) For any fixed py, B = 1p20()* + 2 (R + pcos go(t)) pi > (R + p)~2p} since
cos p(t) < 1. By making appropriate choices of initial conditions, we may achieve any
value of E > (R + p)~2p3. Observe that 5p?(t)% + 4 (R + pcos @(t))_ng is exactly the
sum of the kinetic and potential energies for a particle of mass p? moving in one dimension
with potential energy V(¢) = 1 (R + pcos) _2p§.

V(e)

g s ©
So you can develop some intuition about the behaviour of ¢(t) by imagining what happens
to a particle moving on the surface in the figure above.

o If pg = 0, then, from (ELg) and (EL,), 0(t) = @(t) = 0 for all ¢ and the constant
speed geodesic sweeps out a circle with 6 and ¢ constant. In the figure on the left
below, the heavy line is the top half of the geodesic.

z

o If pp #0 and F = %(R + p)"2pz, then the condition

-2

_ —2 _
s(R+pcosep(t) pg <E=3(R+p)’ps < (R+pcosp(t)) < (R+p)~°

forces cos ¢(t) > 1 and hence ¢(t) = 0 for all t. The geodesic sweeps out the outside
equator of the torus, r = R+ p, z = 0, with 6 constant. In the figure on the right
above, the heavy line is the one quarter of the geodesic.

o If pg # 0 and (R + p)~?p} < E < 1(R — p)~2p}, then the condition

%(R-l—pcosgp(t))_ng <FE — (R-i—pcosgp(t))_2 < % <= R+ pcosp(t) > L

ﬁ
) e}

@ Joel Feldman. 2007. All rights reserved. November 14, 2007 Torus Geodesics



forces cos p(t) > %(\f;—E — R) > —1. Let cos g = %(\f;—E — R) with 0 < g < 7. The

geodesic oscillates around the outside equator of the torus with ¢ oscillating between
+p while 6 remains of fixed sign and bounded away from zero.

o If pp # 0 and E = 1(R — p)~?p3, then 6(t) = (Rf’_iep)zt, (t) = 7 satisfies both (ELy)
and (EL,) and has the desired values of pg and E. This geodesic sweeps out the inside
equator of the torus, r = R — p, z = 0.

But we may also achieve the same values of py and E by choosing some —7 < ¢(0) < 7
(so that (R + pcos @(O))_ng < 3(R — p)~?p}) and then choosing ¢(0) to satisfy
E = 1p%¢(0)? + 5 (R+ pcos @(O))_ng. If, for example, ¢(0) > 0, then ¢(t) increases
towards 7, but ¢(t) decreases towards 0 at the same time in such a way that ¢(t) never
actually achieves the value 7w (just as happened in Problem Set 2, #3). At the same
time 6 remains of fixed sign and bounded away from zero. So the geodesic approachs

—~

the inner equator asymptotically.

o If pg # 0 and E > (R — p)~?p3, then
50%¢(t)° = E — L(R+ pcose(t) *pg > E— 5(R—p)~*p; >0
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As () is continuous, it remains bounded away from zero and of constant sign. Since

0(t)

— Po
 (R+pcosp(t))?

6(t) also remains bounded away from zero and of constant sign. So the geodesic wraps
around the torus. The figure below shows part of such a geodesic. The heavy solid line
is the portion with 7(¢) > R and the heavy dashed line is the portion with r(t) < R.
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