Torus Geodesics

Let $0 < \rho < R$ be constants. The surface in ${\rm I\!R}^3$ whose equation in cylindrical coordinates is

$$(r-R)^2 + z^2 = \rho^2$$

is a torus, which we shall call M. Use as coordinates on M two angles θ and φ determined by

$$x = (R + \rho \cos \varphi) \cos \theta$$
 $y = (R + \rho \cos \varphi) \sin \theta$ $z = \rho \sin \varphi$

y

By way of a check, observe that $r=R+\rho\cos\varphi$ and $z=\rho\sin\varphi$ obey the equation $(r-R)^2+z^2=\rho^2$. For any curve on M

$$\dot{x}(t) = -\dot{\varphi}(t) \rho \sin \varphi(t) \cos \theta(t) - \dot{\theta}(t) \left(R + \rho \cos \varphi(t) \right) \sin \theta(t)$$

$$\dot{y}(t) = -\dot{\varphi}(t) \rho \sin \varphi(t) \sin \theta(t) + \dot{\theta}(t) \left(R + \rho \cos \varphi(t) \right) \cos \theta(t)$$

$$\dot{z}(t) = \dot{\varphi}(t) \rho \cos \varphi(t)$$

Thus

$$\dot{x}(t)^{2} + \dot{y}(t)^{2} + \dot{z}(t)^{2} = \rho^{2}\dot{\varphi}(t)^{2} + (R + \rho\cos\varphi(t))^{2}\dot{\theta}(t)^{2}$$

and the Lagrangian for free motion on M is $L(\theta, \varphi, v_{\theta}, v_{\varphi}) = \frac{1}{2}\rho^2 v_{\varphi}^2 + \frac{1}{2}(R + \rho \cos \varphi)^2 v_{\theta}^2$. The θ Euler–Lagrange equation is

$$\frac{d}{dt} \left(\frac{\partial L}{\partial v_{\theta}} (\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t)) \right) = \frac{\partial L}{\partial \theta} (\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t))$$

$$\implies \frac{d}{dt} \left((R + \rho \cos \varphi(t))^{2} \dot{\theta}(t) \right) = 0$$

$$\implies (R + \rho \cos \varphi(t))^{2} \dot{\theta}(t) = p_{\theta}, \text{constant}$$
(EL_{\theta})

The φ Euler-Lagrange equation is

$$\frac{d}{dt} \left(\frac{\partial L}{\partial v_{\varphi}} (\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t)) \right) = \frac{\partial L}{\partial \varphi} (\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t))$$

$$\implies \rho^{2} \ddot{\varphi}(t) = -\rho (R + \rho \cos \varphi(t)) \sin \varphi(t) \, \dot{\theta}(t)^{2}$$

$$\implies \rho^{2} \ddot{\varphi}(t) = -\rho (R + \rho \cos \varphi(t))^{-3} \sin \varphi(t) \, p_{\theta}^{2} \qquad (EL_{\varphi})$$

By conservation of energy

$$\frac{1}{2}\rho^2 \dot{\varphi}(t)^2 + \frac{1}{2} \left(R + \rho \cos \varphi(t) \right)^2 \dot{\theta}(t)^2 = E, \text{ constant}$$

$$\Longrightarrow \frac{1}{2}\rho^2 \dot{\varphi}(t)^2 = E - \frac{1}{2} (R + \rho \cos \varphi(t))^{-2} p_\theta^2 \tag{E}$$

Observe that, by making appropriate choices of initial conditions, we may achieve any value of $p_{\theta} \in \mathbb{R}$. (For example, we could choose $\theta(0) = \varphi(0) = 0$, $\dot{\varphi}(0) = 0$ and $\dot{\theta}(0) = \frac{p_{\theta}}{(R+\rho)^2}$.) For any fixed p_{θ} , $E = \frac{1}{2}\rho^2\dot{\varphi}(t)^2 + \frac{1}{2}(R+\rho\cos\varphi(t))^{-2}p_{\theta}^2 \geq \frac{1}{2}(R+\rho)^{-2}p_{\theta}^2$ since $\cos\varphi(t) \leq 1$. By making appropriate choices of initial conditions, we may achieve any value of $E \geq \frac{1}{2}(R+\rho)^{-2}p_{\theta}^2$. Observe that $\frac{1}{2}\rho^2\dot{\varphi}(t)^2 + \frac{1}{2}(R+\rho\cos\varphi(t))^{-2}p_{\theta}^2$ is exactly the sum of the kinetic and potential energies for a particle of mass ρ^2 moving in one dimension with potential energy $V(\varphi) = \frac{1}{2}(R+\rho\cos\varphi)^{-2}p_{\theta}^2$.

So you can develop some intuition about the behaviour of $\varphi(t)$ by imagining what happens to a particle moving on the surface in the figure above.

o If $p_{\theta} = 0$, then, from (EL_{θ}) and (EL_{φ}) , $\dot{\theta}(t) = \ddot{\varphi}(t) = 0$ for all t and the constant speed geodesic sweeps out a circle with θ and $\dot{\varphi}$ constant. In the figure on the left below, the heavy line is the top half of the geodesic.

• If $p_{\theta} \neq 0$ and $E = \frac{1}{2}(R + \rho)^{-2}p_{\theta}^2$, then the condition

$$\frac{1}{2} \left(R + \rho \cos \varphi(t) \right)^{-2} p_{\theta}^2 \le E = \frac{1}{2} (R + \rho)^{-2} p_{\theta}^2 \iff \left(R + \rho \cos \varphi(t) \right)^{-2} \le (R + \rho)^{-2}$$

forces $\cos \varphi(t) \ge 1$ and hence $\varphi(t) = 0$ for all t. The geodesic sweeps out the outside equator of the torus, $r = R + \rho$, z = 0, with $\dot{\theta}$ constant. In the figure on the right above, the heavy line is the one quarter of the geodesic.

• If $p_{\theta} \neq 0$ and $\frac{1}{2}(R+\rho)^{-2}p_{\theta}^2 < E < \frac{1}{2}(R-\rho)^{-2}p_{\theta}^2$, then the condition

$$\frac{1}{2} \left(R + \rho \cos \varphi(t) \right)^{-2} p_{\theta}^2 \leq E \iff \left(R + \rho \cos \varphi(t) \right)^{-2} \leq \frac{2E}{p_{\theta}^2} \iff R + \rho \cos \varphi(t) \geq \frac{p_{\theta}}{\sqrt{2E}}$$

forces $\cos \varphi(t) \ge \frac{1}{\rho} \left(\frac{p_{\theta}}{\sqrt{2E}} - R \right) > -1$. Let $\cos \varphi_0 = \frac{1}{\rho} \left(\frac{p_{\theta}}{\sqrt{2E}} - R \right)$ with $0 < \varphi_0 < \pi$. The geodesic oscillates around the outside equator of the torus with φ oscillating between $\pm \varphi_0$ while $\dot{\theta}$ remains of fixed sign and bounded away from zero.

• If $p_{\theta} \neq 0$ and $E = \frac{1}{2}(R - \rho)^{-2}p_{\theta}^2$, then $\theta(t) = \frac{p_{\theta}}{(R - \rho)^2}t$, $\varphi(t) = \pi$ satisfies both (EL_{θ}) and (EL_{φ}) and has the desired values of p_{θ} and E. This geodesic sweeps out the inside equator of the torus, $r = R - \rho$, z = 0.

But we may also achieve the same values of p_{θ} and E by choosing some $-\pi < \varphi(0) < \pi$ (so that $\frac{1}{2}(R + \rho \cos \varphi(0))^{-2}p_{\theta}^2 < \frac{1}{2}(R - \rho)^{-2}p_{\theta}^2$) and then choosing $\dot{\varphi}(0)$ to satisfy $E = \frac{1}{2}\rho^2\dot{\varphi}(0)^2 + \frac{1}{2}(R + \rho\cos\varphi(0))^{-2}p_{\theta}^2$. If, for example, $\dot{\varphi}(0) > 0$, then $\varphi(t)$ increases towards π , but $\dot{\varphi}(t)$ decreases towards 0 at the same time in such a way that $\varphi(t)$ never actually achieves the value π (just as happened in Problem Set 2, #3). At the same time $\dot{\theta}$ remains of fixed sign and bounded away from zero. So the geodesic approachs the inner equator asymptotically.

• If $p_{\theta} \neq 0$ and $E > \frac{1}{2}(R - \rho)^{-2}p_{\theta}^2$, then

$$\frac{1}{2}\rho^2 \dot{\varphi}(t)^2 = E - \frac{1}{2}(R + \rho\cos\varphi(t))^{-2}p_\theta^2 \ge E - \frac{1}{2}(R - \rho)^{-2}p_\theta^2 > 0$$

As $\dot{\varphi}(t)$ is continuous, it remains bounded away from zero and of constant sign. Since

$$\dot{\theta}(t) = \frac{p_{\theta}}{(R + \rho \cos \varphi(t))^2}$$

 $\dot{\theta}(t)$ also remains bounded away from zero and of constant sign. So the geodesic wraps around the torus. The figure below shows part of such a geodesic. The heavy solid line is the portion with $r(t) \geq R$ and the heavy dashed line is the portion with $r(t) \leq R$.

