
Torus Geodesics

Let 0 < ρ < R be constants. The surface in IR3 whose equation in cylindrical coordi-

nates is

(r −R)2 + z2 = ρ2

is a torus, which we shall call M . Use as coordinates on M two angles θ and ϕ determined

by

x = (R+ ρ cosϕ) cos θ y = (R+ ρ cosϕ) sin θ z = ρ sinϕ
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By way of a check, observe that r = R + ρ cosϕ and z = ρ sinϕ obey the equation

(r −R)2 + z2 = ρ2. For any curve on M

ẋ(t) = −ϕ̇(t) ρ sinϕ(t) cos θ(t)− θ̇(t)
(

R+ ρ cosϕ(t)
)

sin θ(t)

ẏ(t) = −ϕ̇(t) ρ sinϕ(t) sin θ(t) + θ̇(t)
(

R+ ρ cosϕ(t)
)

cos θ(t)

ż(t) = ϕ̇(t) ρ cosϕ(t)

Thus

ẋ(t)2 + ẏ(t)2 + ż(t)2 = ρ2ϕ̇(t)2 +
(

R + ρ cosϕ(t)
)2
θ̇(t)2

and the Lagrangian for free motion on M is L(θ, ϕ, vθ, vϕ) =
1
2ρ

2v2ϕ + 1
2 (R + ρ cosϕ)2v2θ .

The θ Euler–Lagrange equation is

d
dt

(

∂L
∂vθ

(

θ(t), ϕ(t), θ̇(t), ϕ̇(t)
)

)

= ∂L
∂θ

(

θ(t), ϕ(t), θ̇(t), ϕ̇(t)
)

=⇒ d
dt

(

(

R+ ρ cosϕ(t)
)2
θ̇(t)

)

= 0

=⇒
(

R+ ρ cosϕ(t)
)2
θ̇(t) = pθ, constant (ELθ)

The ϕ Euler–Lagrange equation is

d
dt

(

∂L
∂vϕ

(

θ(t), ϕ(t), θ̇(t), ϕ̇(t)
)

)

= ∂L
∂ϕ

(

θ(t), ϕ(t), θ̇(t), ϕ̇(t)
)

=⇒ ρ2ϕ̈(t) = −ρ
(

R + ρ cosϕ(t)
)

sinϕ(t) θ̇(t)2

=⇒ ρ2ϕ̈(t) = −ρ
(

R + ρ cosϕ(t)
)

−3
sinϕ(t) p2θ (ELϕ)
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By conservation of energy

1
2ρ

2ϕ̇(t)2 + 1
2

(

R+ ρ cosϕ(t)
)2
θ̇(t)2 = E, constant

=⇒ 1
2ρ

2ϕ̇(t)2 = E − 1
2 (R+ ρ cosϕ(t))−2p2θ (E)

Observe that, by making appropriate choices of initial conditions, we may achieve any

value of pθ ∈ IR. (For example, we could choose θ(0) = ϕ(0) = 0, ϕ̇(0) = 0 and θ̇(0) =
pθ

(R+ρ)2 .) For any fixed pθ, E = 1
2ρ

2ϕ̇(t)2 + 1
2

(

R + ρ cosϕ(t)
)

−2
p2θ ≥ 1

2(R + ρ)−2p2θ since

cosϕ(t) ≤ 1. By making appropriate choices of initial conditions, we may achieve any

value of E ≥ 1
2 (R+ ρ)−2p2θ. Observe that 1

2ρ
2ϕ̇(t)2 + 1

2

(

R+ ρ cosϕ(t)
)

−2
p2θ is exactly the

sum of the kinetic and potential energies for a particle of mass ρ2 moving in one dimension

with potential energy V (ϕ) = 1
2

(

R + ρ cosϕ
)

−2
p2θ.

ϕ

V (ϕ)

π−π

So you can develop some intuition about the behaviour of ϕ(t) by imagining what happens

to a particle moving on the surface in the figure above.

◦ If pθ = 0, then, from (ELθ) and (ELϕ), θ̇(t) = ϕ̈(t) = 0 for all t and the constant

speed geodesic sweeps out a circle with θ and ϕ̇ constant. In the figure on the left

below, the heavy line is the top half of the geodesic.
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◦ If pθ 6= 0 and E = 1
2(R + ρ)−2p2θ, then the condition

1
2

(

R + ρ cosϕ(t)
)

−2
p2θ ≤ E = 1

2(R + ρ)−2p2θ ⇐⇒
(

R+ ρ cosϕ(t)
)

−2
≤ (R + ρ)−2

forces cosϕ(t) ≥ 1 and hence ϕ(t) = 0 for all t. The geodesic sweeps out the outside

equator of the torus, r = R + ρ, z = 0, with θ̇ constant. In the figure on the right

above, the heavy line is the one quarter of the geodesic.

◦ If pθ 6= 0 and 1
2(R + ρ)−2p2θ < E < 1

2(R− ρ)−2p2θ, then the condition

1
2

(

R+ ρ cosϕ(t)
)

−2
p2θ ≤ E ⇐⇒

(

R+ ρ cosϕ(t)
)

−2
≤ 2E

p2

θ

⇐⇒ R+ ρ cosϕ(t) ≥ pθ
√

2E
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forces cosϕ(t) ≥ 1
ρ

(

pθ
√

2E
−R

)

> −1. Let cosϕ0 = 1
ρ

(

pθ
√

2E
−R

)

with 0 < ϕ0 < π. The

geodesic oscillates around the outside equator of the torus with ϕ oscillating between

±ϕ0 while θ̇ remains of fixed sign and bounded away from zero.

◦ If pθ 6= 0 and E = 1
2 (R − ρ)−2p2θ, then θ(t) = pθ

(R−ρ)2 t, ϕ(t) = π satisfies both (ELθ)

and (ELϕ) and has the desired values of pθ and E. This geodesic sweeps out the inside

equator of the torus, r = R− ρ, z = 0.

But we may also achieve the same values of pθ and E by choosing some −π < ϕ(0) < π

(so that 1
2

(

R + ρ cosϕ(0)
)

−2
p2θ < 1

2
(R − ρ)−2p2θ) and then choosing ϕ̇(0) to satisfy

E = 1
2ρ

2ϕ̇(0)2 + 1
2

(

R+ ρ cosϕ(0)
)

−2
p2θ. If, for example, ϕ̇(0) > 0, then ϕ(t) increases

towards π, but ϕ̇(t) decreases towards 0 at the same time in such a way that ϕ(t) never

actually achieves the value π (just as happened in Problem Set 2, #3). At the same

time θ̇ remains of fixed sign and bounded away from zero. So the geodesic approachs

the inner equator asymptotically.

◦ If pθ 6= 0 and E > 1
2
(R − ρ)−2p2θ, then

1
2ρ

2ϕ̇(t)2 = E − 1
2 (R+ ρ cosϕ(t))−2p2θ ≥ E − 1

2 (R− ρ)−2p2θ > 0
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As ϕ̇(t) is continuous, it remains bounded away from zero and of constant sign. Since

θ̇(t) = pθ

(R+ρ cosϕ(t))2

θ̇(t) also remains bounded away from zero and of constant sign. So the geodesic wraps

around the torus. The figure below shows part of such a geodesic. The heavy solid line

is the portion with r(t) ≥ R and the heavy dashed line is the portion with r(t) ≤ R.
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