Torus Geodesics

Let $0<\rho<R$ be constants. The surface in \mathbb{R}^{3} whose equation in cylindrical coordinates is

$$
(r-R)^{2}+z^{2}=\rho^{2}
$$

is a torus, which we shall call M. Use as coordinates on M two angles θ and φ determined by

$$
x=(R+\rho \cos \varphi) \cos \theta \quad y=(R+\rho \cos \varphi) \sin \theta \quad z=\rho \sin \varphi
$$

By way of a check, observe that $r=R+\rho \cos \varphi$ and $z=\rho \sin \varphi$ obey the equation $(r-R)^{2}+z^{2}=\rho^{2}$. For any curve on M

$$
\begin{aligned}
\dot{x}(t) & =-\dot{\varphi}(t) \rho \sin \varphi(t) \cos \theta(t)-\dot{\theta}(t)(R+\rho \cos \varphi(t)) \sin \theta(t) \\
\dot{y}(t) & =-\dot{\varphi}(t) \rho \sin \varphi(t) \sin \theta(t)+\dot{\theta}(t)(R+\rho \cos \varphi(t)) \cos \theta(t) \\
\dot{z}(t) & =\dot{\varphi}(t) \rho \cos \varphi(t)
\end{aligned}
$$

Thus

$$
\dot{x}(t)^{2}+\dot{y}(t)^{2}+\dot{z}(t)^{2}=\rho^{2} \dot{\varphi}(t)^{2}+(R+\rho \cos \varphi(t))^{2} \dot{\theta}(t)^{2}
$$

and the Lagrangian for free motion on M is $L\left(\theta, \varphi, v_{\theta}, v_{\varphi}\right)=\frac{1}{2} \rho^{2} v_{\varphi}^{2}+\frac{1}{2}(R+\rho \cos \varphi)^{2} v_{\theta}^{2}$. The θ Euler-Lagrange equation is

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial v_{\theta}}(\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t))\right)=\frac{\partial L}{\partial \theta}(\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t)) \\
& \quad \Longrightarrow \frac{d}{d t}\left((R+\rho \cos \varphi(t))^{2} \dot{\theta}(t)\right)=0 \\
& \quad \Longrightarrow(R+\rho \cos \varphi(t))^{2} \dot{\theta}(t)=p_{\theta}, \text { constant }
\end{align*}
$$

The φ Euler-Lagrange equation is

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial v_{\varphi}}(\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t))\right)=\frac{\partial L}{\partial \varphi}(\theta(t), \varphi(t), \dot{\theta}(t), \dot{\varphi}(t)) \\
& \Longrightarrow \rho^{2} \ddot{\varphi}(t)=-\rho(R+\rho \cos \varphi(t)) \sin \varphi(t) \dot{\theta}(t)^{2} \\
& \Longrightarrow \rho^{2} \ddot{\varphi}(t)=-\rho(R+\rho \cos \varphi(t))^{-3} \sin \varphi(t) p_{\theta}^{2}
\end{align*}
$$

By conservation of energy

$$
\begin{align*}
& \frac{1}{2} \rho^{2} \dot{\varphi}(t)^{2}+\frac{1}{2}(R+\rho \cos \varphi(t))^{2} \dot{\theta}(t)^{2}=E, \text { constant } \\
& \Longrightarrow \frac{1}{2} \rho^{2} \dot{\varphi}(t)^{2}=E-\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2} \tag{E}
\end{align*}
$$

Observe that, by making appropriate choices of initial conditions, we may achieve any value of $p_{\theta} \in \mathbb{R}$. (For example, we could choose $\theta(0)=\varphi(0)=0, \dot{\varphi}(0)=0$ and $\dot{\theta}(0)=$ $\frac{p_{\theta}}{(R+\rho)^{2}}$.) For any fixed $p_{\theta}, E=\frac{1}{2} \rho^{2} \dot{\varphi}(t)^{2}+\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2} \geq \frac{1}{2}(R+\rho)^{-2} p_{\theta}^{2}$ since $\cos \varphi(t) \leq 1$. By making appropriate choices of initial conditions, we may achieve any value of $E \geq \frac{1}{2}(R+\rho)^{-2} p_{\theta}^{2}$. Observe that $\frac{1}{2} \rho^{2} \dot{\varphi}(t)^{2}+\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2}$ is exactly the sum of the kinetic and potential energies for a particle of mass ρ^{2} moving in one dimension with potential energy $V(\varphi)=\frac{1}{2}(R+\rho \cos \varphi)^{-2} p_{\theta}^{2}$.

So you can develop some intuition about the behaviour of $\varphi(t)$ by imagining what happens to a particle moving on the surface in the figure above.

- If $p_{\theta}=0$, then, from $\left(\mathrm{EL}_{\theta}\right)$ and $\left(\mathrm{EL}_{\varphi}\right), \dot{\theta}(t)=\ddot{\varphi}(t)=0$ for all t and the constant speed geodesic sweeps out a circle with θ and $\dot{\varphi}$ constant. In the figure on the left below, the heavy line is the top half of the geodesic.

- If $p_{\theta} \neq 0$ and $E=\frac{1}{2}(R+\rho)^{-2} p_{\theta}^{2}$, then the condition

$$
\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2} \leq E=\frac{1}{2}(R+\rho)^{-2} p_{\theta}^{2} \Longleftrightarrow(R+\rho \cos \varphi(t))^{-2} \leq(R+\rho)^{-2}
$$

forces $\cos \varphi(t) \geq 1$ and hence $\varphi(t)=0$ for all t. The geodesic sweeps out the outside equator of the torus, $r=R+\rho, z=0$, with $\dot{\theta}$ constant. In the figure on the right above, the heavy line is the one quarter of the geodesic.

- If $p_{\theta} \neq 0$ and $\frac{1}{2}(R+\rho)^{-2} p_{\theta}^{2}<E<\frac{1}{2}(R-\rho)^{-2} p_{\theta}^{2}$, then the condition

$$
\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2} \leq E \Longleftrightarrow(R+\rho \cos \varphi(t))^{-2} \leq \frac{2 E}{p_{\theta}^{2}} \Longleftrightarrow R+\rho \cos \varphi(t) \geq \frac{p_{\theta}}{\sqrt{2 E}}
$$

forces $\cos \varphi(t) \geq \frac{1}{\rho}\left(\frac{p_{\theta}}{\sqrt{2 E}}-R\right)>-1$. Let $\cos \varphi_{0}=\frac{1}{\rho}\left(\frac{p_{\theta}}{\sqrt{2 E}}-R\right)$ with $0<\varphi_{0}<\pi$. The geodesic oscillates around the outside equator of the torus with φ oscillating between $\pm \varphi_{0}$ while $\dot{\theta}$ remains of fixed sign and bounded away from zero.

- If $p_{\theta} \neq 0$ and $E=\frac{1}{2}(R-\rho)^{-2} p_{\theta}^{2}$, then $\theta(t)=\frac{p_{\theta}}{(R-\rho)^{2}} t, \varphi(t)=\pi$ satisfies both $\left(\mathrm{EL}_{\theta}\right)$ and $\left(\mathrm{EL}_{\varphi}\right)$ and has the desired values of p_{θ} and E. This geodesic sweeps out the inside equator of the torus, $r=R-\rho, z=0$.

But we may also achieve the same values of p_{θ} and E by choosing some $-\pi<\varphi(0)<\pi$ (so that $\left.\frac{1}{2}(R+\rho \cos \varphi(0))^{-2} p_{\theta}^{2}<\frac{1}{2}(R-\rho)^{-2} p_{\theta}^{2}\right)$ and then choosing $\dot{\varphi}(0)$ to satisfy $E=\frac{1}{2} \rho^{2} \dot{\varphi}(0)^{2}+\frac{1}{2}(R+\rho \cos \varphi(0))^{-2} p_{\theta}^{2}$. If, for example, $\dot{\varphi}(0)>0$, then $\varphi(t)$ increases towards π, but $\dot{\varphi}(t)$ decreases towards 0 at the same time in such a way that $\varphi(t)$ never actually achieves the value π (just as happened in Problem Set 2, \#3). At the same time $\dot{\theta}$ remains of fixed sign and bounded away from zero. So the geodesic approachs the inner equator asymptotically.

- If $p_{\theta} \neq 0$ and $E>\frac{1}{2}(R-\rho)^{-2} p_{\theta}^{2}$, then

$$
\frac{1}{2} \rho^{2} \dot{\varphi}(t)^{2}=E-\frac{1}{2}(R+\rho \cos \varphi(t))^{-2} p_{\theta}^{2} \geq E-\frac{1}{2}(R-\rho)^{-2} p_{\theta}^{2}>0
$$

As $\dot{\varphi}(t)$ is continuous, it remains bounded away from zero and of constant sign. Since

$$
\dot{\theta}(t)=\frac{p_{\theta}}{(R+\rho \cos \varphi(t))^{2}}
$$

$\dot{\theta}(t)$ also remains bounded away from zero and of constant sign. So the geodesic wraps around the torus. The figure below shows part of such a geodesic. The heavy solid line is the portion with $r(t) \geq R$ and the heavy dashed line is the portion with $r(t) \leq R$.

