
First Order Initial Value Problems

A “first order initial value problem” is the problem of finding a function ~x(t) which

satisfies the conditions

~̇x = ~F (~x, t) ~x(t0) = ~ξ0 (1)

where the initial time, t0, is a given real number, the initial position, ~ξ0 ∈ IRd, is a given

vector and ~F : IRd × IR → IRd is a given function. We shall assume throughout these

notes that ~F is C∞. By definition, a solution to the initial value problem (1) on the

interval I (which may be open, closed or half–open, but which, of course, contains t0) is a

differentiable function ~x(t) which obeys

~x(t0) = ~ξ0 and ~̇x(t) = ~F
(

~x(t), t
)

for all t ∈ I

Remark 1 The restriction to first order derivatives is not significant. Higher order

systems can always be converted into first order systems, at the cost of introducing more

variables. For example, substituting

~y = ~x ~z = ~̇x

into the second order system ~̈x = ~F (~x, ~̇x, t) converts it to the first order system

d

dt

[

~y

~z

]

=

[

~z
~F (~y, ~z, t)

]

Theorem 2 Let d ∈ IN, t0 ∈ IR, ~ξ0 ∈ IRd and I be an interval in IR that contains t0.

Assume that ~F : IRd × IR → IRd is C∞.

(a) (Regularity in t) A solution to the initial value problem (1) on I is C∞.

(b) (Uniqueness) If ~x(t) and ~y(t) are both solutions to the initial value problem (1) on I,

then ~x(t) = ~y(t) for all t ∈ I.

Remark: For uniqueness, it is not sufficient to assume that ~F is continuous. For example

x(t) = 0 and x(t) =
(

2
3 t
)3/2

both solve the initial value problem x(0) = 0, ẋ = 3
√
x.

(c) (Local Existence) Let 0 < ρ < ∞ and let Cρ(~ξ0) denote the closed ball in IRd with centre

ξ0 and radius ρ. Then there exists a T > 0 such that the initial value problem (1) has a

c© Joel Feldman. 2007. All rights reserved. September 6, 2007 First Order Initial Value Problems 1



solution ~x(t) on the interval [t0 − T, t0 + T ] with ~x(t) ∈ Cρ(~ξ0) for all t ∈ [t0 − T, t0 + T ].

Furthermore, if we fix any θ > 0 and define M = sup
{

| ~F (~x, t)|
∣

∣ ~x ∈ Cρ(~ξ0), |t−t0| ≤ θ
}

(which is the maximum speed that ~x can have while |t− t0| ≤ θ and ~x is in Cρ(~ξ0)), then

T ≥ min
{

θ, ρ
M

}

Remark: The bad news is that solutions of (1) need not exist for all t. For example,

ẋ = x2, x(0) = 1 has solution x(t) = − 1
t−1

, which blows up at t = 1, despite the fact that

the problem “ẋ = x2, x(0) = 1” shows no sign of pathology. Another example is

ẋ = x2 x(0) = 1

ẏ = x2 cosx− x3 sinx y(0) = cos 1

The solution is x(t) = − 1
t−1

, y(t) = − 1
t−1

cos 1
t−1

, which oscillates wildly while it is blowing

up. The good news is that solutions, which we already know exist at least for times near

t0, can only fail to globally exist (i.e. exist for all t) under specific, known, circumstances,

that can often be ruled out.

(d) (Absence of a Global Solution) Let −∞ ≤ a < b ≤ ∞ with at least one of a, b finite.

Let ~x(t) be a solution of (1) on the interval (a, b). Suppose that there does not exist a

solution on any interval that properly contains (a, b). Then

b < ∞ =⇒ lim sup
t→b−

|~x(t)| = ∞

a > −∞ =⇒ lim sup
t→a+

|~x(t)| = ∞

Remark: It suffices to consider open intervals (a, b), because given a solution on some

nonopen interval I, we can always use part (c) to extend it to a solution on an open interval

that contains I.

(e) (Global Existence) Suppose that a function H(~x) is conserved by all solutions of (1).

In other words, suppose that if ~x(t) obeys (1), then d
dtH(~x(t)) = 0. Suppose further that

lim
|~x|→∞

∣

∣H(~x)
∣

∣ = ∞. Then every solution of (1) on an interval properly contained in IR may

be extended to a global solution.

(f) (Regularity with respect to initial conditions and other parameters) Let ~F (~x, t, ~α) be

C∞. Let θ, ρ, a > 0. Then there is a T > 0 such that

(i) For each τ, ~ζ and ~α obeying |τ − t0| < θ, |~ξ − ~ξ0| < ρ and |~α− ~α0| < a, there is a

solution ~x(t ; τ, ~ξ, ~α) to the initial value problem

~̇x = ~F (~x, t, ~α) ~x(τ) = ~ξ

on the interval [τ − T, τ + T ].

(ii) ~x(t ; τ, ~ξ, ~α) is C∞ as a function of all of its arguments in the region given in (i).
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Proof: (a) Let ~x(t) be a solution to the initial value problem (1) on I. By hypothesis,

it is differentiable on I. Hence it is continuous on I. As ~F is continuous, ~̇x(t) = ~F (~x(t), t)

is a composition of continuous functions, and hence is continuous. That is, ~x(t) is C1 on

I. So ~̇x(t) = ~F (~x(t), t) is also C1 with derivative

d
∑

j=1

∂ ~F
∂xj

(~x(t), t)
dxj

dt
(t) + ∂ ~F

∂t
(~x(t), t) =

d
∑

j=1

∂ ~F
∂xj

Fj(~x(t), t) +
∂ ~F
∂t

(~x(t), t)

which is again continuous. So ~x(t) is C2 on I. And so on.

(b) Let J be any closed finite interval containing t0 and contained in I. We shall show

that ~x(t) = ~y(t) for all t ∈ J . Since J is compact and ~x(t) and ~y(t) are continuous, both

~x(t) and ~y(t) are bounded for t ∈ J . Let S be a sphere in IRd that is sufficiently large that

it contains ~x(t) and ~y(t) for all t ∈ J . Define

MS = sup
{

d
∑

i,j=1

∣

∣

∂Fi

∂xj
(~x, t)

∣

∣

∣

∣

∣
~x ∈ S, t ∈ J

}

and, for each T > 0, let

M(T ) = sup
{

|~x(t)− ~y(t)|
∣

∣ |t− t0| ≤ T
}

Since ~x(t0) = ~y(t0),

∣

∣~x(t)− ~y(t)
∣

∣ =

∣

∣

∣

∣

∫ t

t0

[

~̇x(τ)− ~̇y(τ)
]

dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

[

~F
(

~x(τ), τ
)

− ~F
(

~y(τ), τ
)]

dτ

∣

∣

∣

∣

Now, for any ~x, ~y ∈ S and τ ∈ J ,

∣

∣~F
(

~x, τ
)

− ~F
(

~y, τ
)
∣

∣ =

∣

∣

∣

∣

∫ 1

0

d
dσ

~F
(

σ~x+ (1− σ)~y, τ
)

dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

d
∑

j=1

(xj − yj) (∂xj
~F )

(

σ~x+ (1− σ)~y, τ
)

dσ

∣

∣

∣

∣

≤
d

∑

j,k=1

∫ 1

0

|xj − yj|
∣

∣∂xj
Fk

(

σ~x+ (1− σ)~y, τ
)
∣

∣ dσ

≤
∫ 1

0

|~x− ~y| MS dσ = MS|~x− ~y|

(2)
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Hence, for all t ∈ J ,

∣

∣~x(t)− ~y(t)
∣

∣ ≤
∣

∣

∣

∣

∫ t

t0

MS |~x(τ)− ~y(τ)| dτ
∣

∣

∣

∣

If t ∈ J and |t− t0| ≤ T , the same is true for all τ between t0 and t so that

∣

∣~x(t)− ~y(t)
∣

∣ ≤
∣

∣

∣

∣

∫ t

t0

MS |~x(τ)− ~y(τ)| dτ
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

t0

MS M(T ) dτ

∣

∣

∣

∣

= |t− t0|MS M(T )

≤ TMSM(T )

Taking the supremum over t ∈ J with |t− t0| ≤ T gives

M(T ) ≤ TMSM(T )

If T ≤ 1
2MS

, we have M(T ) ≤ 1
2M(T ) which forces M(t) = 0 for all t ∈ J with |t− t0| ≤ T .

If 1
2MS

is not sufficiently big that [t0− 1
2MS

, t0+
1

2MS
] covers all of J , repeat with t0 replaced

by t0 ± 1
2MS

and then t0 ± 2× 1
2MS

, and so on.

(c) We shall construct a local solution to the integral equation

~x(t) = ~ξ0 +

∫ t

t0

~F
(

~x(τ), τ
)

dτ (3)

which is equivalent to the initial value problem (1). To do so, we construct a sequence of

approximate solutions by the algorithm

~x(0)(t) = ~ξ0

~x(1)(t) = ~ξ0 +

∫ t

t0

~F
(

~x(0)(τ), τ
)

dτ

~x(2)(t) = ~ξ0 +

∫ t

t0

~F
(

~x(1)(τ), τ
)

dτ

...

~x(n)(t) = ~ξ0 +

∫ t

t0

~F
(

~x(n−1)(τ), τ
)

dτ (4)

If the sequence ~x(n)(t) of approximate solutions converges uniformly on some closed interval

[t0−T, t0+T ], then taking the limit of (4) as n → ∞ shows that ~x(t) = lim
n→∞

~x(n)(t) obeys

(3) and hence (1).

Define
T = min

{

θ, ρ
M

}

L = sup
{

d
∑

i,j=1

∣

∣

∂Fi

∂xj
(~x, t)

∣

∣

∣

∣

∣
~x ∈ Cρ(~ξ0), |t− t0| ≤ T

}

µk = sup
{

∣

∣~x(k)(t)− ~x(k+1)(t)
∣

∣

∣

∣

∣
|t− t0| ≤ T

}
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It suffices to prove that
∞
∑

k=0

µk < ∞, since then we will have uniform convergence.

We first verify that ~x(n)(t) remains in Cρ(~ξ0) for all n and |t−t0| ≤ T . Since MT ≤ ρ,

we have

sup
|t−t0|≤T

∣

∣~x(n)(t)− ~ξ0
∣

∣ ≤ sup
|t−t0|≤T

∣

∣

∣

∣

∫ t

t0

~F
(

~x(n−1)(τ), τ
)

dτ

∣

∣

∣

∣

≤ T sup
|τ−t0|≤T

∣

∣~F
(

~x(n−1)(τ), τ
)
∣

∣

≤ TM ≤ ρ if ~x(n−1)(τ) ∈ Cρ(~ξ0) for all |τ − t0| ≤ T

and it follows, by induction on n, that
∣

∣~x(n)(t) − ~ξ0
∣

∣ ≤ ρ (i.e. ~x(n)(t) ∈ Cρ(~ξ0)) for all

|t− t0| ≤ T .

Now

∣

∣~x(k)(t)− ~x(k+1)(t)
∣

∣ =

∣

∣

∣

∣

∫ t

t0

[

~F
(

~x(k−1)(τ), τ
)

− ~F
(

~x(k)(τ), τ
)]

dτ

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

∫ t

t0

∣

∣~x(k−1)(τ1)− ~x(k)(τ1)
∣

∣ dτ1

∣

∣

∣

∣

as in (2). Iterating this bound gives

∣

∣~x(k)(t)− ~x(k+1)(t)
∣

∣ ≤ L2

∣

∣

∣

∣

∫ t

t0

dτ1

∫ τ1

t0

dτ2
∣

∣~x(k−2)(τ2)− ~x(k−1)(τ2)
∣

∣

∣

∣

∣

∣

...

≤ Lk

∣

∣

∣

∣

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τk−1

t0

dτk
∣

∣~x(0)(τk)− ~x(1)(τk)
∣

∣

∣

∣

∣

∣

= Lk

∣

∣

∣

∣

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τk−1

t0

dτk
∣

∣~ξ0 − ~x(1)(τk)
∣

∣

∣

∣

∣

∣

≤ Lk

∣

∣

∣

∣

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τk−1

t0

dτk ρ

∣

∣

∣

∣

= Lkρ 1
k! |t− t0|k

and hence
∞
∑

k=0

µk ≤
∞
∑

k=0

ρ 1
k!
(LT )k = ρeLT

(d) This is easy. If the solution stays bounded near one end of the interval, say on [b−ε, b)

with b < ∞, we can use the local existence result of part (c) to extend the solution past b

simply by choosing t0 very close to b.
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(e) This is also easy. If h = H(~ξ0), then any solution ~x(t) must remain in

Xh =
{

~x
∣

∣ H(~x) = h
}

Since lim
|~x|→∞

∣

∣H(~x)
∣

∣ = ∞, the region Xh is bounded. Apply part (d).

(f) (Outline of proof only.) The idea of the proof is the same as that for part (c) (local

existence). For each fixed (τ, ~ξ, ~α), the solution ~x(t ; τ, ~ξ, ~α) is the limit of the sequence

defined recursively by

~x(0)(t ; τ, ~ξ, ~α) = ~ξ

~x(n)(t ; τ, ~ξ, ~α) = ~ξ +

∫ t

τ

~F
(

~x(n−1)(τ ′ ; τ, ~ξ, ~α), τ ′, ~α
)

dτ ′ n = 1, 2, 3, · · · (5)

As in part (a), it is obvious by induction on k that ~x(k)(t ; τ, ~ξ, ~α) is C∞ in all of its

arguments. To prove that the limit as k → ∞ is C∞, it suffices to prove that all derivatives

of ~x(k) converge uniformly as k → ∞. So it suffices to prove that for any (possibly higher

order) derivative D,

µD,k = sup
∣

∣D~x(k) −D~x(k+1)
∣

∣

obeys
∞
∑

k=0

µD,k < ∞. But we can bound µD,k by applying D to the recursion relation (5)

and then using the method of part (c).
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