First Order Initial Value Problems

A "first order initial value problem" is the problem of finding a function $\vec{x}(t)$ which satisfies the conditions

$$
\begin{equation*}
\dot{\vec{x}}=\vec{F}(\vec{x}, t) \quad \vec{x}\left(t_{0}\right)=\vec{\xi}_{0} \tag{1}
\end{equation*}
$$

where the initial time, t_{0}, is a given real number, the initial position, $\vec{\xi}_{0} \in \mathbb{R}^{d}$, is a given vector and $\vec{F}: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is a given function. We shall assume throughout these notes that \vec{F} is C^{∞}. By definition, a solution to the initial value problem (1) on the interval I (which may be open, closed or half-open, but which, of course, contains t_{0}) is a differentiable function $\vec{x}(t)$ which obeys

$$
\vec{x}\left(t_{0}\right)=\vec{\xi}_{0} \quad \text { and } \quad \dot{\vec{x}}(t)=\vec{F}(\vec{x}(t), t) \quad \text { for all } t \in I
$$

Remark 1 The restriction to first order derivatives is not significant. Higher order systems can always be converted into first order systems, at the cost of introducing more variables. For example, substituting

$$
\vec{y}=\vec{x} \quad \vec{z}=\dot{\vec{x}}
$$

into the second order system $\ddot{\vec{x}}=\vec{F}(\vec{x}, \dot{\vec{x}}, t)$ converts it to the first order system

$$
\frac{d}{d t}\left[\begin{array}{c}
\vec{y} \\
\vec{z}
\end{array}\right]=\left[\begin{array}{c}
\vec{z} \\
\vec{F}(\vec{y}, \vec{z}, t)
\end{array}\right]
$$

Theorem 2 Let $d \in \mathbb{N}, t_{0} \in \mathbb{R}, \vec{\xi}_{0} \in \mathbb{R}^{d}$ and I be an interval in \mathbb{R} that contains t_{0}. Assume that $\vec{F}: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is C^{∞}.
(a) (Regularity in t) A solution to the initial value problem (1) on I is C^{∞}.
(b) (Uniqueness) If $\vec{x}(t)$ and $\vec{y}(t)$ are both solutions to the initial value problem (1) on I, then $\vec{x}(t)=\vec{y}(t)$ for all $t \in I$.

Remark: For uniqueness, it is not sufficient to assume that \vec{F} is continuous. For example $x(t)=0$ and $x(t)=\left(\frac{2}{3} t\right)^{3 / 2}$ both solve the initial value problem $x(0)=0, \dot{x}=\sqrt[3]{x}$.
(c) (Local Existence) Let $0<\rho<\infty$ and let $C_{\rho}\left(\vec{\xi}_{0}\right)$ denote the closed ball in \mathbb{R}^{d} with centre ξ_{0} and radius ρ. Then there exists a $T>0$ such that the initial value problem (1) has a
solution $\vec{x}(t)$ on the interval $\left[t_{0}-T, t_{0}+T\right]$ with $\vec{x}(t) \in C_{\rho}\left(\vec{\xi}_{0}\right)$ for all $t \in\left[t_{0}-T, t_{0}+T\right]$. Furthermore, if we fix any $\theta>0$ and define $M=\sup \left\{|\vec{F}(\vec{x}, t)|\left|\vec{x} \in C_{\rho}\left(\vec{\xi}_{0}\right),\left|t-t_{0}\right| \leq \theta\right\}\right.$ (which is the maximum speed that \vec{x} can have while $\left|t-t_{0}\right| \leq \theta$ and \vec{x} is in $C_{\rho}\left(\vec{\xi}_{0}\right)$), then

$$
T \geq \min \left\{\theta, \frac{\rho}{M}\right\}
$$

Remark: The bad news is that solutions of (1) need not exist for all t. For example, $\dot{x}=x^{2}, x(0)=1$ has solution $x(t)=-\frac{1}{t-1}$, which blows up at $t=1$, despite the fact that the problem" " $\dot{x}=x^{2}, x(0)=1$ " shows no sign of pathology. Another example is

$$
\begin{array}{ll}
\dot{x}=x^{2} & x(0)=1 \\
\dot{y}=x^{2} \cos x-x^{3} \sin x & y(0)=\cos 1
\end{array}
$$

The solution is $x(t)=-\frac{1}{t-1}, y(t)=-\frac{1}{t-1} \cos \frac{1}{t-1}$, which oscillates wildly while it is blowing up. The good news is that solutions, which we already know exist at least for times near t_{0}, can only fail to globally exist (i.e. exist for all t) under specific, known, circumstances, that can often be ruled out.
(d) (Absence of a Global Solution) Let $-\infty \leq a<b \leq \infty$ with at least one of a, b finite. Let $\vec{x}(t)$ be a solution of (1) on the interval (a, b). Suppose that there does not exist a solution on any interval that properly contains (a, b). Then

$$
\begin{aligned}
b<\infty & \Longrightarrow \limsup _{t \rightarrow b-}|\vec{x}(t)|=\infty \\
a>-\infty & \Longrightarrow \limsup _{t \rightarrow a+}|\vec{x}(t)|=\infty
\end{aligned}
$$

Remark: It suffices to consider open intervals (a, b), because given a solution on some nonopen interval I, we can always use part (c) to extend it to a solution on an open interval that contains I.
(e) (Global Existence) Suppose that a function $H(\vec{x})$ is conserved by all solutions of (1). In other words, suppose that if $\vec{x}(t)$ obeys (1), then $\frac{d}{d t} H(\vec{x}(t))=0$. Suppose further that $\lim _{|\vec{x}| \rightarrow \infty}|H(\vec{x})|=\infty$. Then every solution of (1) on an interval properly contained in \mathbb{R} may be extended to a global solution.
(f) (Regularity with respect to initial conditions and other parameters) Let $\vec{F}(\vec{x}, t, \vec{\alpha})$ be C^{∞}. Let $\theta, \rho, a>0$. Then there is a $T>0$ such that
(i) For each $\tau, \vec{\zeta}$ and $\vec{\alpha}$ obeying $\left|\tau-t_{0}\right|<\theta,\left|\vec{\xi}-\vec{\xi}_{0}\right|<\rho$ and $\left|\vec{\alpha}-\vec{\alpha}_{0}\right|<a$, there is a solution $\vec{x}(t ; \tau, \vec{\xi}, \vec{\alpha})$ to the initial value problem

$$
\dot{\vec{x}}=\vec{F}(\vec{x}, t, \vec{\alpha}) \quad \vec{x}(\tau)=\vec{\xi}
$$

on the interval $[\tau-T, \tau+T]$.
(ii) $\vec{x}(t ; \tau, \vec{\xi}, \vec{\alpha})$ is C^{∞} as a function of all of its arguments in the region given in (i).

Proof: (a) Let $\vec{x}(t)$ be a solution to the initial value problem (1) on I. By hypothesis, it is differentiable on I. Hence it is continuous on I. As \vec{F} is continuous, $\dot{\vec{x}}(t)=\vec{F}(\vec{x}(t), t)$ is a composition of continuous functions, and hence is continuous. That is, $\vec{x}(t)$ is C^{1} on I. So $\dot{\vec{x}}(t)=\vec{F}(\vec{x}(t), t)$ is also C^{1} with derivative

$$
\sum_{j=1}^{d} \frac{\partial \vec{F}}{\partial x_{j}}(\vec{x}(t), t) \frac{d x_{j}}{d t}(t)+\frac{\partial \vec{F}}{\partial t}(\vec{x}(t), t)=\sum_{j=1}^{d} \frac{\partial \vec{F}}{\partial x_{j}} F_{j}(\vec{x}(t), t)+\frac{\partial \vec{F}}{\partial t}(\vec{x}(t), t)
$$

which is again continuous. So $\vec{x}(t)$ is C^{2} on I. And so on.
(b) Let J be any closed finite interval containing t_{0} and contained in I. We shall show that $\vec{x}(t)=\vec{y}(t)$ for all $t \in J$. Since J is compact and $\vec{x}(t)$ and $\vec{y}(t)$ are continuous, both $\vec{x}(t)$ and $\vec{y}(t)$ are bounded for $t \in J$. Let S be a sphere in \mathbb{R}^{d} that is sufficiently large that it contains $\vec{x}(t)$ and $\vec{y}(t)$ for all $t \in J$. Define

$$
M_{S}=\sup \left\{\left.\sum_{i, j=1}^{d}\left|\frac{\partial F_{i}}{\partial x_{j}}(\vec{x}, t)\right| \right\rvert\, \vec{x} \in S, t \in J\right\}
$$

and, for each $T>0$, let

$$
M(T)=\sup \left\{|\vec{x}(t)-\vec{y}(t)|| | t-t_{0} \mid \leq T\right\}
$$

Since $\vec{x}\left(t_{0}\right)=\vec{y}\left(t_{0}\right)$,

$$
\begin{aligned}
|\vec{x}(t)-\vec{y}(t)| & =\left|\int_{t_{0}}^{t}[\dot{\vec{x}}(\tau)-\dot{\vec{y}}(\tau)] d \tau\right| \\
& =\left|\int_{t_{0}}^{t}[\vec{F}(\vec{x}(\tau), \tau)-\vec{F}(\vec{y}(\tau), \tau)] d \tau\right|
\end{aligned}
$$

Now, for any $\vec{x}, \vec{y} \in S$ and $\tau \in J$,

$$
\begin{align*}
|\vec{F}(\vec{x}, \tau)-\vec{F}(\vec{y}, \tau)| & =\left|\int_{0}^{1} \frac{d}{d \sigma} \vec{F}(\sigma \vec{x}+(1-\sigma) \vec{y}, \tau) d \sigma\right| \\
& =\left|\int_{0}^{1} \sum_{j=1}^{d}\left(x_{j}-y_{j}\right)\left(\partial_{x_{j}} \vec{F}\right)(\sigma \vec{x}+(1-\sigma) \vec{y}, \tau) d \sigma\right| \\
& \leq \sum_{j, k=1}^{d} \int_{0}^{1}\left|x_{j}-y_{j}\right|\left|\partial_{x_{j}} F_{k}(\sigma \vec{x}+(1-\sigma) \vec{y}, \tau)\right| d \sigma \tag{2}\\
& \leq \int_{0}^{1}|\vec{x}-\vec{y}| M_{S} d \sigma=M_{S}|\vec{x}-\vec{y}|
\end{align*}
$$

Hence, for all $t \in J$,

$$
|\vec{x}(t)-\vec{y}(t)| \leq\left|\int_{t_{0}}^{t} M_{S}\right| \vec{x}(\tau)-\vec{y}(\tau)|d \tau|
$$

If $t \in J$ and $\left|t-t_{0}\right| \leq T$, the same is true for all τ between t_{0} and t so that

$$
\begin{aligned}
|\vec{x}(t)-\vec{y}(t)| & \leq\left|\int_{t_{0}}^{t} M_{S}\right| \vec{x}(\tau)-\vec{y}(\tau)|d \tau| \leq\left|\int_{t_{0}}^{t} M_{S} M(T) d \tau\right|=\left|t-t_{0}\right| M_{S} M(T) \\
& \leq T M_{S} M(T)
\end{aligned}
$$

Taking the supremum over $t \in J$ with $\left|t-t_{0}\right| \leq T$ gives

$$
M(T) \leq T M_{S} M(T)
$$

If $T \leq \frac{1}{2 M_{S}}$, we have $M(T) \leq \frac{1}{2} M(T)$ which forces $M(t)=0$ for all $t \in J$ with $\left|t-t_{0}\right| \leq T$. If $\frac{1}{2 M_{S}}$ is not sufficiently big that $\left[t_{0}-\frac{1}{2 M_{S}}, t_{0}+\frac{1}{2 M_{S}}\right]$ covers all of J, repeat with t_{0} replaced by $t_{0} \pm \frac{1}{2 M_{S}}$ and then $t_{0} \pm 2 \times \frac{1}{2 M_{S}}$, and so on.
(c) We shall construct a local solution to the integral equation

$$
\begin{equation*}
\vec{x}(t)=\vec{\xi}_{0}+\int_{t_{0}}^{t} \vec{F}(\vec{x}(\tau), \tau) d \tau \tag{3}
\end{equation*}
$$

which is equivalent to the initial value problem (1). To do so, we construct a sequence of approximate solutions by the algorithm

$$
\begin{align*}
\vec{x}^{(0)}(t) & =\vec{\xi}_{0} \\
\vec{x}^{(1)}(t) & =\vec{\xi}_{0}+\int_{t_{0}}^{t} \vec{F}\left(\vec{x}^{(0)}(\tau), \tau\right) d \tau \\
\vec{x}^{(2)}(t) & =\vec{\xi}_{0}+\int_{t_{0}}^{t} \vec{F}\left(\vec{x}^{(1)}(\tau), \tau\right) d \tau \\
& \vdots \\
\vec{x}^{(n)}(t) & =\vec{\xi}_{0}+\int_{t_{0}}^{t} \vec{F}\left(\vec{x}^{(n-1)}(\tau), \tau\right) d \tau \tag{4}
\end{align*}
$$

If the sequence $\vec{x}^{(n)}(t)$ of approximate solutions converges uniformly on some closed interval $\left[t_{0}-T, t_{0}+T\right]$, then taking the limit of (4) as $n \rightarrow \infty$ shows that $\vec{x}(t)=\lim _{n \rightarrow \infty} \vec{x}^{(n)}(t)$ obeys (3) and hence (1).

Define

$$
\begin{aligned}
T & =\min \left\{\theta, \frac{\rho}{M}\right\} \\
L & =\sup \left\{\sum_{i, j=1}^{d}\left|\frac{\partial F_{i}}{\partial x_{j}}(\vec{x}, t)\right|\left|\vec{x} \in C_{\rho}\left(\vec{\xi}_{0}\right),\left|t-t_{0}\right| \leq T\right\}\right. \\
\mu_{k} & =\sup \left\{\left|\vec{x}^{(k)}(t)-\vec{x}^{(k+1)}(t)\right|| | t-t_{0} \mid \leq T\right\}
\end{aligned}
$$

It suffices to prove that $\sum_{k=0}^{\infty} \mu_{k}<\infty$, since then we will have uniform convergence.
We first verify that $\vec{x}^{(n)}(t)$ remains in $C_{\rho}\left(\vec{\xi}_{0}\right)$ for all n and $\left|t-t_{0}\right| \leq T$. Since $M T \leq \rho$, we have

$$
\begin{aligned}
\sup _{\left|t-t_{0}\right| \leq T}\left|\vec{x}^{(n)}(t)-\vec{\xi}_{0}\right| & \leq \sup _{\left|t-t_{0}\right| \leq T}\left|\int_{t_{0}}^{t} \vec{F}\left(\vec{x}^{(n-1)}(\tau), \tau\right) d \tau\right| \\
& \leq T \sup _{\left|\tau-t_{0}\right| \leq T}\left|\vec{F}\left(\vec{x}^{(n-1)}(\tau), \tau\right)\right| \\
& \leq T M \leq \rho \quad \text { if } \vec{x}^{(n-1)}(\tau) \in C_{\rho}\left(\vec{\xi}_{0}\right) \text { for all }\left|\tau-t_{0}\right| \leq T
\end{aligned}
$$

and it follows, by induction on n, that $\left|\vec{x}^{(n)}(t)-\vec{\xi}_{0}\right| \leq \rho$ (i.e. $\left.\vec{x}^{(n)}(t) \in C_{\rho}\left(\vec{\xi}_{0}\right)\right)$ for all $\left|t-t_{0}\right| \leq T$.

Now

$$
\begin{aligned}
\left|\vec{x}^{(k)}(t)-\vec{x}^{(k+1)}(t)\right| & =\left|\int_{t_{0}}^{t}\left[\vec{F}\left(\vec{x}^{(k-1)}(\tau), \tau\right)-\vec{F}\left(\vec{x}^{(k)}(\tau), \tau\right)\right] d \tau\right| \\
& \leq L\left|\int_{t_{0}}^{t}\right| \vec{x}^{(k-1)}\left(\tau_{1}\right)-\vec{x}^{(k)}\left(\tau_{1}\right)\left|d \tau_{1}\right|
\end{aligned}
$$

as in (2). Iterating this bound gives

$$
\begin{aligned}
\left|\vec{x}^{(k)}(t)-\vec{x}^{(k+1)}(t)\right| & \leq L^{2}\left|\int_{t_{0}}^{t} d \tau_{1} \int_{t_{0}}^{\tau_{1}} d \tau_{2}\right| \vec{x}^{(k-2)}\left(\tau_{2}\right)-\vec{x}^{(k-1)}\left(\tau_{2}\right)| | \\
& \vdots \\
& \leq L^{k}\left|\int_{t_{0}}^{t} d \tau_{1} \int_{t_{0}}^{\tau_{1}} d \tau_{2} \cdots \int_{t_{0}}^{\tau_{k-1}} d \tau_{k}\right| \vec{x}^{(0)}\left(\tau_{k}\right)-\vec{x}^{(1)}\left(\tau_{k}\right)| | \\
& =L^{k}\left|\int_{t_{0}}^{t} d \tau_{1} \int_{t_{0}}^{\tau_{1}} d \tau_{2} \cdots \int_{t_{0}}^{\tau_{k-1}} d \tau_{k}\right| \vec{\xi}_{0}-\vec{x}^{(1)}\left(\tau_{k}\right)| | \\
& \leq L^{k}\left|\int_{t_{0}}^{t} d \tau_{1} \int_{t_{0}}^{\tau_{1}} d \tau_{2} \cdots \int_{t_{0}}^{\tau_{k-1}} d \tau_{k} \rho\right| \\
& =L^{k} \rho \frac{1}{k!\left|t-t_{0}\right|^{k}}
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{\infty} \mu_{k} \leq \sum_{k=0}^{\infty} \rho \frac{1}{k!}(L T)^{k}=\rho e^{L T}
$$

(d) This is easy. If the solution stays bounded near one end of the interval, say on $[b-\varepsilon, b)$ with $b<\infty$, we can use the local existence result of part (c) to extend the solution past b simply by choosing t_{0} very close to b.
(e) This is also easy. If $h=H\left(\vec{\xi}_{0}\right)$, then any solution $\vec{x}(t)$ must remain in

$$
X_{h}=\{\vec{x} \mid H(\vec{x})=h\}
$$

Since $\lim _{|\vec{x}| \rightarrow \infty}|H(\vec{x})|=\infty$, the region X_{h} is bounded. Apply part (d).
(f) (Outline of proof only.) The idea of the proof is the same as that for part (c) (local existence). For each fixed $(\tau, \vec{\xi}, \vec{\alpha})$, the solution $\vec{x}(t ; \tau, \vec{\xi}, \vec{\alpha})$ is the limit of the sequence defined recursively by

$$
\begin{align*}
& \vec{x}^{(0)}(t ; \tau, \vec{\xi}, \vec{\alpha})=\vec{\xi} \\
& \vec{x}^{(n)}(t ; \tau, \vec{\xi}, \vec{\alpha})=\vec{\xi}+\int_{\tau}^{t} \vec{F}\left(\vec{x}^{(n-1)}\left(\tau^{\prime} ; \tau, \vec{\xi}, \vec{\alpha}\right), \tau^{\prime}, \vec{\alpha}\right) d \tau^{\prime} \quad n=1,2,3, \cdots \tag{5}
\end{align*}
$$

As in part (a), it is obvious by induction on k that $\vec{x}^{(k)}(t ; \tau, \vec{\xi}, \vec{\alpha})$ is C^{∞} in all of its arguments. To prove that the limit as $k \rightarrow \infty$ is C^{∞}, it suffices to prove that all derivatives of $\vec{x}^{(k)}$ converge uniformly as $k \rightarrow \infty$. So it suffices to prove that for any (possibly higher order) derivative D,

$$
\mu_{D, k}=\sup \left|D \vec{x}^{(k)}-D \vec{x}^{(k+1)}\right|
$$

obeys $\sum_{k=0}^{\infty} \mu_{D, k}<\infty$. But we can bound $\mu_{D, k}$ by applying D to the recursion relation (5) and then using the method of part (c).

