
Euler Angles

Euler angles are three angles that provide coordinates on SO(3). Denote by R1(θ)

and R3(θ) rotations about the x– and z– axes, respectively, by an angle θ. That is

R1(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 R3(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1





For each (ϕ, θ, ψ) ∈ [0, 2π) × [0, π] × [0, 2π), the matrix R3(ϕ)R1(θ)R3(ψ) is certainly in

SO(3). The following theorem says that each R ∈ SO(3) has a representation of the form

R3(ϕ)R1(θ)R3(ψ) with (ϕ, θ, ψ) ∈ [0, 2π)× [0, π]× [0, 2π) and that this representation is

unique unless θ is 0 or π (in which case R3(ϕ)R1(θ)R3(ψ) depends only on ϕ+ψ or ϕ−ψ,

respectively).

Theorem.

(a) (Existence) For each R ∈ SO(3), there an (ϕ, θ, ψ) ∈ [0, 2π)× [0, π]× [0, 2π) such that

R = R3(ϕ)R1(θ)R3(ψ).

(b) (Uniqueness) Let (ϕ, θ, ψ), (ϕ′, θ′, ψ′) ∈ [0, 2π) × [0, π] × [0, 2π) and assume that

R3(ϕ)R1(θ)R3(ψ) = R3(ϕ
′)R1(θ

′)R3(ψ
′). Then θ = θ′. If θ 6= 0, π, then ϕ = ϕ′ and

ψ = ψ′.

(c) If R =
[

ı̂1 ı̂2 ı̂3
]

, then

◦ θ is the angle between ı̂3 and the z–axis and

◦ if θ /∈ {0, π}, then ϕ is the angle between the projection of ı̂3 on the xy–plane and

the x–axis, plus π
2

Proof: (a) Write R =
[

ı̂1 ı̂2 ı̂3
]

where ı̂1, ı̂2 and ı̂3 are three mutually perpendicular

unit vectors that form a right handed triple and use

ê1 =





1
0
0



 ê2 =





0
1
0



 ê3 =





0
0
1





to denote the standard basis for IR3.
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ê3

ê2

ê1 ı̂1

ı̂2ı̂3

Set

n̂ =











ê3×ı̂3
|ê3×ı̂3|

if ı̂3 6= ±ê3

ı̂1 if ı̂3 = ê3

−ı̂1 if ı̂3 = −ê3

Since ê1 and n̂ are both unit vectors that are perpendicular to ê3, there is an angle

ϕ ∈ [0, 2π) such that rotation about ê3 by ϕ maps ê1 to n̂. This rotation leaves ê3
invariant. Thus

n̂ = R3(ϕ)ê1 ê3 = R3(ϕ)ê3

ϕ

ê3

ê1

ı̂3

n̂

Now ê3 and ı̂3 are both unit vectors that are perpendicular to n̂. So there is an angle

θ ∈ [0, 2π) such that rotation about n̂ by θ maps ê3 to ı̂3. In fact θ ∈ [0, π] because(1) n̂

has direction ê3 × ı̂3. The rotation about n̂ by θ is implemented by R3(ϕ)R1(θ)R3(−ϕ)

(since d
dθ
R3(ϕ)R1(θ)R3(−ϕ)~x = R3(ϕ)

(

ê1 × (R3(−ϕ)~x)
)

=
(

R3(ϕ)ê1
)

× ~x = n̂× ~x). So

ı̂3 = R3(ϕ)R1(θ)R3(−ϕ)ê3 = R3(ϕ)R1(θ)ê3
θ

ê3
ı̂3

n̂

n̂ = R3(ϕ)R1(θ)R3(−ϕ)n̂ = R3(ϕ)R1(θ)ê1

Finally, ı̂1 and n̂ are both unit vectors that are perpendicular to ı̂3. So there is

an angle ψ ∈ [0, 2π) such that rotation about ı̂3 by ψ maps n̂ to ı̂1. The rota-

tion about ı̂3 by ψ is implemented by R3(ϕ)R1(θ)R3(ψ)R1(−θ)R3(−ϕ). (Note that

R3(ϕ)R1(θ)R3(ψ)R1(−θ)R3(−ϕ)ı̂3 = ı̂3.) So

(1) Use a coordinate system with ê3 on the positive z–axis and n̂ on the positive y–axis. If ı̂3 =
aê1 + bê2 + cê3, then ê3 × ı̂3 = aê2 − bê1. For this to be a positive multiple of ê2, we need b = 0 and
a > 0. So ı̂3 must be in the xz–plane with positive x–component.
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ı̂1 = R3(ϕ)R1(θ)R3(ψ)R1(−θ)R3(−ϕ)n̂ = R3(ϕ)R1(θ)R3(ψ)ê1

ψ ı̂1

ı̂3

n̂

ı̂3 = R3(ϕ)R1(θ)R3(ψ)R1(−θ)R3(−ϕ)ı̂3 = R3(ϕ)R1(θ)R3(ψ)ê3

In other words, the two matrices R and R3(ϕ)R1(θ)R3(ψ) have the same first column

(namely ı̂1) and the same third column (namely ı̂3). The columns of any matrix in

SO(3) form a right handed triple of mutually perpendicular unit vectors. As both R

and R3(ϕ)R1(θ)R3(ψ) are in SO(3), they both must have the same middle column too

(namely ı̂2).

Uniqueness: Let (ϕ, θ, ψ), (ϕ′, θ′, ψ′) ∈ [0, 2π)× [0, π]× [0, 2π) and assume that

R3(ϕ)R1(θ)R3(ψ) = R3(ϕ
′)R1(θ

′)R3(ψ
′)

Multiplying on the left by R3(−ϕ
′) and on the right by R3(−ψ

′) gives

R3(ϕ− ϕ′)R1(θ)R3(ψ − ψ′) = R1(θ
′)

In particular R3(ϕ− ϕ′)R1(θ)R3(ψ − ψ′)ê3 = R1(θ
′)ê3. As

R1(θ
′)ê3 =





0
− sin θ′

cos θ′





and

R3(ϕ− ϕ′)R1(θ)R3(ψ − ψ′)ê3 = R3(ϕ− ϕ′)R1(θ)ê3

=





cos(ϕ− ϕ′) − sin(ϕ− ϕ′) 0
sin(ϕ− ϕ′) cos(ϕ− ϕ′) 0

0 0 1









0
− sin θ
cos θ





=





sin(ϕ− ϕ′) sin θ
− cos(ϕ− ϕ′) sin θ

cos θ





we have




0
− sin θ′

cos θ′



 =





sin(ϕ− ϕ′) sin θ
− cos(ϕ− ϕ′) sin θ

cos θ





As 0 ≤ θ, θ′ ∈ [0, π] and cos is 1–1 on [0π], we now have that θ = θ′. As long as θ 6= 0, π, we

also have sin(ϕ−ϕ′) = 0 and cos(ϕ−ϕ′) = 1, which forces ϕ−ϕ′ to be an integer multiple

of 2π. Since 0 ≤ ϕ, ϕ′ < 2π, this in turn forces ϕ = ϕ′. Finally, R3(ϕ)R1(θ)R3(ψ) =

R3(ϕ
′)R1(θ

′)R3(ψ
′) has now reduced to R3(ϕ)R1(θ)R3(ψ) = R3(ϕ)R1(θ)R3(ψ

′), which is

equivalent to R3(ψ) = R3(ψ
′). Since 0 ≤ ψ, ψ′ < 2π, this forces ψ = ψ′.
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(c) Assume that θ 6= 0. Then n̂ = ê3×ı̂3
|ê3×ı̂3|

is perpendicular to both ı̂3 and ê3. We defined

θ to be the angle of rotation about n̂ that maps ê3 to ı̂3. By definition, this is the angle

between ê3 and ı̂3. Let Pxy denote the xy–plane and P3 denote the plane containing ê3
and ı̂3. Then n̂ lies in Pxy (because it is perpendicular to ê3) and is perpendicular to P3.

The projection of ı̂3 onto the xy–plane (denoted ~π3 in the figure below) lies in both P3

and Pxy and so is an angle π
2 from n̂. We defined ϕ to be the angle between ê1 and n̂.

y

z

x

θ

ϕ

ê3

ı̂3

~π3

P3

Pxyn̂
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