Euler Angles

Euler angles are three angles that provide coordinates on SO(3). Denote by $R_1(\theta)$ and $R_3(\theta)$ rotations about the x- and z- axes, respectively, by an angle θ . That is

$$R_1(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \qquad R_3(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For each $(\varphi, \theta, \psi) \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$, the matrix $R_3(\varphi)R_1(\theta)R_3(\psi)$ is certainly in SO(3). The following theorem says that each $R \in SO(3)$ has a representation of the form $R_3(\varphi)R_1(\theta)R_3(\psi)$ with $(\varphi, \theta, \psi) \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$ and that this representation is unique unless θ is 0 or π (in which case $R_3(\varphi)R_1(\theta)R_3(\psi)$ depends only on $\varphi + \psi$ or $\varphi - \psi$, respectively).

Theorem.

(a) (Existence) For each $R \in SO(3)$, there an $(\varphi, \theta, \psi) \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$ such that $R = R_3(\varphi)R_1(\theta)R_3(\psi)$.

(b) (Uniqueness) Let $(\varphi, \theta, \psi), (\varphi', \theta', \psi') \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$ and assume that $R_3(\varphi)R_1(\theta)R_3(\psi) = R_3(\varphi')R_1(\theta')R_3(\psi')$. Then $\theta = \theta'$. If $\theta \neq 0, \pi$, then $\varphi = \varphi'$ and $\psi = \psi'$.

(c) If R = [î₁ î₂ î₃], then
θ is the angle between î₃ and the z-axis and
if θ ∉ {0, π}, then φ is the angle between the projection of î₃ on the xy-plane and the x-axis, plus π/2

Proof: (a) Write $R = \begin{bmatrix} \hat{i}_1 & \hat{i}_2 & \hat{i}_3 \end{bmatrix}$ where \hat{i}_1, \hat{i}_2 and \hat{i}_3 are three mutually perpendicular unit vectors that form a right handed triple and use

$$\hat{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad \hat{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad \hat{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

to denote the standard basis for \mathbb{R}^3 .

[©] Joel Feldman. 2007. All rights reserved.

Set

 $\hat{n} = \begin{cases} \frac{\hat{e}_3 \times \hat{i}_3}{|\hat{e}_3 \times \hat{i}_3|} & \text{if } \hat{i}_3 \neq \pm \hat{e}_3 \\ \hat{i}_1 & \text{if } \hat{i}_3 = \hat{e}_3 \\ -\hat{i}_1 & \text{if } \hat{i}_3 = -\hat{e}_3 \end{cases}$

Since \hat{e}_1 and \hat{n} are both unit vectors that are perpendicular to \hat{e}_3 , there is an angle $\varphi \in [0, 2\pi)$ such that rotation about \hat{e}_3 by φ maps \hat{e}_1 to \hat{n} . This rotation leaves \hat{e}_3 invariant. Thus

$$\hat{n} = R_3(\varphi)\hat{e}_1 \qquad \hat{e}_3 = R_3(\varphi)\hat{e}_3 \qquad \qquad \hat{i}_3 \qquad \hat{e}_3 \qquad \hat{i}_3 \qquad \hat{e}_3 \qquad \hat{e}_3 \qquad \hat{e}_4 \qquad \hat{e}_4$$

Now \hat{e}_3 and \hat{i}_3 are both unit vectors that are perpendicular to \hat{n} . So there is an angle $\theta \in [0, 2\pi)$ such that rotation about \hat{n} by θ maps \hat{e}_3 to \hat{i}_3 . In fact $\theta \in [0, \pi]$ because⁽¹⁾ \hat{n} has direction $\hat{e}_3 \times \hat{i}_3$. The rotation about \hat{n} by θ is implemented by $R_3(\varphi)R_1(\theta)R_3(-\varphi)$ (since $\frac{d}{d\theta}R_3(\varphi)R_1(\theta)R_3(-\varphi)\vec{x} = R_3(\varphi)(\hat{e}_1 \times (R_3(-\varphi)\vec{x})) = (R_3(\varphi)\hat{e}_1) \times \vec{x} = \hat{n} \times \vec{x})$. So

Finally, \hat{i}_1 and \hat{n} are both unit vectors that are perpendicular to \hat{i}_3 . So there is an angle $\psi \in [0, 2\pi)$ such that rotation about \hat{i}_3 by ψ maps \hat{n} to \hat{i}_1 . The rotation about \hat{i}_3 by ψ is implemented by $R_3(\varphi)R_1(\theta)R_3(\psi)R_1(-\theta)R_3(-\varphi)$. (Note that $R_3(\varphi)R_1(\theta)R_3(\psi)R_1(-\theta)R_3(-\varphi)\hat{i}_3 = \hat{i}_3$.) So

⁽¹⁾ Use a coordinate system with \hat{e}_3 on the positive z-axis and \hat{n} on the positive y-axis. If $\hat{i}_3 = a\hat{e}_1 + b\hat{e}_2 + c\hat{e}_3$, then $\hat{e}_3 \times \hat{i}_3 = a\hat{e}_2 - b\hat{e}_1$. For this to be a positive multiple of \hat{e}_2 , we need b = 0 and a > 0. So \hat{i}_3 must be in the xz-plane with positive x-component.

In other words, the two matrices R and $R_3(\varphi)R_1(\theta)R_3(\psi)$ have the same first column (namely \hat{i}_1) and the same third column (namely \hat{i}_3). The columns of any matrix in SO(3) form a right handed triple of mutually perpendicular unit vectors. As both Rand $R_3(\varphi)R_1(\theta)R_3(\psi)$ are in SO(3), they both must have the same middle column too (namely \hat{i}_2).

Uniqueness: Let $(\varphi, \theta, \psi), (\varphi', \theta', \psi') \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$ and assume that

$$R_3(\varphi)R_1(\theta)R_3(\psi) = R_3(\varphi')R_1(\theta')R_3(\psi')$$

Multiplying on the left by $R_3(-\varphi')$ and on the right by $R_3(-\psi')$ gives

$$R_3(\varphi - \varphi')R_1(\theta)R_3(\psi - \psi') = R_1(\theta')$$

In particular $R_3(\varphi - \varphi')R_1(\theta)R_3(\psi - \psi')\hat{e}_3 = R_1(\theta')\hat{e}_3$. As

$$R_1(\theta')\hat{e}_3 = \begin{bmatrix} 0\\ -\sin\theta'\\ \cos\theta' \end{bmatrix}$$

and

$$R_{3}(\varphi - \varphi')R_{1}(\theta)R_{3}(\psi - \psi')\hat{e}_{3} = R_{3}(\varphi - \varphi')R_{1}(\theta)\hat{e}_{3}$$

$$= \begin{bmatrix} \cos(\varphi - \varphi') & -\sin(\varphi - \varphi') & 0\\ \sin(\varphi - \varphi') & \cos(\varphi - \varphi') & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0\\ -\sin\theta\\ \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \sin(\varphi - \varphi')\sin\theta\\ -\cos(\varphi - \varphi')\sin\theta\\ \cos\theta \end{bmatrix}$$

we have

$$\begin{bmatrix} 0\\ -\sin\theta'\\ \cos\theta' \end{bmatrix} = \begin{bmatrix} \sin(\varphi - \varphi')\sin\theta\\ -\cos(\varphi - \varphi')\sin\theta\\ \cos\theta \end{bmatrix}$$

As $0 \le \theta, \theta' \in [0, \pi]$ and cos is 1–1 on $[0\pi]$, we now have that $\theta = \theta'$. As long as $\theta \ne 0, \pi$, we also have $\sin(\varphi - \varphi') = 0$ and $\cos(\varphi - \varphi') = 1$, which forces $\varphi - \varphi'$ to be an integer multiple of 2π . Since $0 \le \varphi, \varphi' < 2\pi$, this in turn forces $\varphi = \varphi'$. Finally, $R_3(\varphi)R_1(\theta)R_3(\psi) = R_3(\varphi')R_1(\theta')R_3(\psi')$ has now reduced to $R_3(\varphi)R_1(\theta)R_3(\psi) = R_3(\varphi)R_1(\theta)R_3(\psi')$, which is equivalent to $R_3(\psi) = R_3(\psi')$. Since $0 \le \psi, \psi' < 2\pi$, this forces $\psi = \psi'$.

(c) Assume that $\theta \neq 0$. Then $\hat{n} = \frac{\hat{e}_3 \times \hat{i}_3}{|\hat{e}_3 \times \hat{i}_3|}$ is perpendicular to both \hat{i}_3 and \hat{e}_3 . We defined θ to be the angle of rotation about \hat{n} that maps \hat{e}_3 to \hat{i}_3 . By definition, this is the angle between \hat{e}_3 and \hat{i}_3 . Let P_{xy} denote the xy-plane and P_3 denote the plane containing \hat{e}_3 and \hat{i}_3 . Then \hat{n} lies in P_{xy} (because it is perpendicular to \hat{e}_3) and is perpendicular to P_3 . The projection of \hat{i}_3 onto the xy-plane (denoted $\vec{\pi}_3$ in the figure below) lies in both P_3 and P_{xy} and so is an angle $\frac{\pi}{2}$ from \hat{n} . We defined φ to be the angle between \hat{e}_1 and \hat{n} .

