Euler Angles

Euler angles are three angles that provide coordinates on $S O(3)$. Denote by $R_{1}(\theta)$ and $R_{3}(\theta)$ rotations about the $x-$ and z - axes, respectively, by an angle θ. That is

$$
R_{1}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{3}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

For each $(\varphi, \theta, \psi) \in[0,2 \pi) \times[0, \pi] \times[0,2 \pi)$, the matrix $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$ is certainly in $S O(3)$. The following theorem says that each $R \in S O(3)$ has a representation of the form $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$ with $(\varphi, \theta, \psi) \in[0,2 \pi) \times[0, \pi] \times[0,2 \pi)$ and that this representation is unique unless θ is 0 or π (in which case $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$ depends only on $\varphi+\psi$ or $\varphi-\psi$, respectively).

Theorem.

(a) (Existence) For each $R \in S O(3)$, there an $(\varphi, \theta, \psi) \in[0,2 \pi) \times[0, \pi] \times[0,2 \pi)$ such that $R=R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$.
(b) (Uniqueness) Let $(\varphi, \theta, \psi),\left(\varphi^{\prime}, \theta^{\prime}, \psi^{\prime}\right) \in[0,2 \pi) \times[0, \pi] \times[0,2 \pi)$ and assume that $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)=R_{3}\left(\varphi^{\prime}\right) R_{1}\left(\theta^{\prime}\right) R_{3}\left(\psi^{\prime}\right)$. Then $\theta=\theta^{\prime}$. If $\theta \neq 0, \pi$, then $\varphi=\varphi^{\prime}$ and $\psi=\psi^{\prime}$.
(c) If $R=\left[\begin{array}{lll}\hat{\imath}_{1} & \hat{\imath}_{2} & \hat{\imath}_{3}\end{array}\right]$, then

- θ is the angle between $\hat{\imath}_{3}$ and the z-axis and
- if $\theta \notin\{0, \pi\}$, then φ is the angle between the projection of $\hat{\imath}_{3}$ on the $x y$-plane and the x-axis, plus $\frac{\pi}{2}$

Proof: (a) Write $R=\left[\begin{array}{lll}\hat{\imath}_{1} & \hat{\imath}_{2} & \hat{\imath}_{3}\end{array}\right]$ where $\hat{\imath}_{1}, \hat{\imath}_{2}$ and $\hat{\imath}_{3}$ are three mutually perpendicular unit vectors that form a right handed triple and use

$$
\hat{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \hat{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \hat{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

to denote the standard basis for \mathbb{R}^{3}.

Set

$$
\hat{n}= \begin{cases}\frac{\hat{e}_{3} \times \hat{\imath}_{3}}{\left|\hat{e}_{3} \times \hat{\imath}_{3}\right|} & \text { if } \hat{\imath}_{3} \neq \pm \hat{e}_{3} \\ \hat{\imath}_{1} & \text { if } \hat{\imath}_{3}=\hat{e}_{3} \\ -\hat{\imath}_{1} & \text { if } \hat{\imath}_{3}=-\hat{e}_{3}\end{cases}
$$

Since \hat{e}_{1} and \hat{n} are both unit vectors that are perpendicular to \hat{e}_{3}, there is an angle $\varphi \in[0,2 \pi)$ such that rotation about \hat{e}_{3} by φ maps \hat{e}_{1} to \hat{n}. This rotation leaves \hat{e}_{3} invariant. Thus

$$
\hat{n}=R_{3}(\varphi) \hat{e}_{1} \quad \hat{e}_{3}=R_{3}(\varphi) \hat{e}_{3}
$$

Now \hat{e}_{3} and $\hat{\imath}_{3}$ are both unit vectors that are perpendicular to \hat{n}. So there is an angle $\theta \in[0,2 \pi)$ such that rotation about \hat{n} by θ maps \hat{e}_{3} to $\hat{\imath}_{3}$. In fact $\theta \in[0, \pi]$ because $^{(1)} \hat{n}$ has direction $\hat{e}_{3} \times \hat{\imath}_{3}$. The rotation about \hat{n} by θ is implemented by $R_{3}(\varphi) R_{1}(\theta) R_{3}(-\varphi)$ (since $\left.\frac{d}{d \theta} R_{3}(\varphi) R_{1}(\theta) R_{3}(-\varphi) \vec{x}=R_{3}(\varphi)\left(\hat{e}_{1} \times\left(R_{3}(-\varphi) \vec{x}\right)\right)=\left(R_{3}(\varphi) \hat{e}_{1}\right) \times \vec{x}=\hat{n} \times \vec{x}\right)$. So

$$
\begin{aligned}
\hat{\imath}_{3} & =R_{3}(\varphi) R_{1}(\theta) R_{3}(-\varphi) \hat{e}_{3}=R_{3}(\varphi) R_{1}(\theta) \hat{e}_{3} \\
\hat{n} & =R_{3}(\varphi) R_{1}(\theta) R_{3}(-\varphi) \hat{n}=R_{3}(\varphi) R_{1}(\theta) \hat{e}_{1}
\end{aligned}
$$

Finally, $\hat{\imath}_{1}$ and \hat{n} are both unit vectors that are perpendicular to $\hat{\imath}_{3}$. So there is an angle $\psi \in[0,2 \pi)$ such that rotation about $\hat{\imath}_{3}$ by ψ maps \hat{n} to $\hat{\imath}_{1}$. The rotation about $\hat{\imath}_{3}$ by ψ is implemented by $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) R_{1}(-\theta) R_{3}(-\varphi)$. (Note that $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) R_{1}(-\theta) R_{3}(-\varphi) \hat{\imath}_{3}=\hat{\imath}_{3}$.) So
(1) Use a coordinate system with \hat{e}_{3} on the positive z-axis and \hat{n} on the positive y-axis. If $\hat{\imath}_{3}=$ $a \hat{e}_{1}+b \hat{e}_{2}+c \hat{e}_{3}$, then $\hat{e}_{3} \times \hat{\imath}_{3}=a \hat{e}_{2}-b \hat{e}_{1}$. For this to be a positive multiple of \hat{e}_{2}, we need $b=0$ and $a>0$. So $\hat{\imath}_{3}$ must be in the $x z$-plane with positive x-component.

$$
\begin{aligned}
& \hat{\imath}_{1}=R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) R_{1}(-\theta) R_{3}(-\varphi) \hat{n}=R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) \hat{e}_{1} \\
& \hat{\imath}_{3}=R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) R_{1}(-\theta) R_{3}(-\varphi) \hat{\imath}_{3}=R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi) \hat{e}_{3}
\end{aligned}
$$

In other words, the two matrices R and $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$ have the same first column (namely $\hat{\imath}_{1}$) and the same third column (namely $\hat{\imath}_{3}$). The columns of any matrix in $S O(3)$ form a right handed triple of mutually perpendicular unit vectors. As both R and $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)$ are in $S O(3)$, they both must have the same middle column too (namely $\hat{\imath}_{2}$).
Uniqueness: Let $(\varphi, \theta, \psi),\left(\varphi^{\prime}, \theta^{\prime}, \psi^{\prime}\right) \in[0,2 \pi) \times[0, \pi] \times[0,2 \pi)$ and assume that

$$
R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)=R_{3}\left(\varphi^{\prime}\right) R_{1}\left(\theta^{\prime}\right) R_{3}\left(\psi^{\prime}\right)
$$

Multiplying on the left by $R_{3}\left(-\varphi^{\prime}\right)$ and on the right by $R_{3}\left(-\psi^{\prime}\right)$ gives

$$
R_{3}\left(\varphi-\varphi^{\prime}\right) R_{1}(\theta) R_{3}\left(\psi-\psi^{\prime}\right)=R_{1}\left(\theta^{\prime}\right)
$$

In particular $R_{3}\left(\varphi-\varphi^{\prime}\right) R_{1}(\theta) R_{3}\left(\psi-\psi^{\prime}\right) \hat{e}_{3}=R_{1}\left(\theta^{\prime}\right) \hat{e}_{3}$. As

$$
R_{1}\left(\theta^{\prime}\right) \hat{e}_{3}=\left[\begin{array}{c}
0 \\
-\sin \theta^{\prime} \\
\cos \theta^{\prime}
\end{array}\right]
$$

and

$$
\begin{aligned}
R_{3}\left(\varphi-\varphi^{\prime}\right) R_{1}(\theta) R_{3}\left(\psi-\psi^{\prime}\right) \hat{e}_{3} & =R_{3}\left(\varphi-\varphi^{\prime}\right) R_{1}(\theta) \hat{e}_{3} \\
& =\left[\begin{array}{ccc}
\cos \left(\varphi-\varphi^{\prime}\right) & -\sin \left(\varphi-\varphi^{\prime}\right) & 0 \\
\sin \left(\varphi-\varphi^{\prime}\right) & \cos \left(\varphi-\varphi^{\prime}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-\sin \theta \\
\cos \theta
\end{array}\right] \\
& =\left[\begin{array}{c}
\sin \left(\varphi-\varphi^{\prime}\right) \sin \theta \\
-\cos \left(\varphi-\varphi^{\prime}\right) \sin \theta \\
\cos \theta
\end{array}\right]
\end{aligned}
$$

we have

$$
\left[\begin{array}{c}
0 \\
-\sin \theta^{\prime} \\
\cos \theta^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\sin \left(\varphi-\varphi^{\prime}\right) \sin \theta \\
-\cos \left(\varphi-\varphi^{\prime}\right) \sin \theta \\
\cos \theta
\end{array}\right]
$$

As $0 \leq \theta, \theta^{\prime} \in[0, \pi]$ and \cos is $1-1$ on $[0 \pi]$, we now have that $\theta=\theta^{\prime}$. As long as $\theta \neq 0$, π, we also have $\sin \left(\varphi-\varphi^{\prime}\right)=0$ and $\cos \left(\varphi-\varphi^{\prime}\right)=1$, which forces $\varphi-\varphi^{\prime}$ to be an integer multiple of 2π. Since $0 \leq \varphi, \varphi^{\prime}<2 \pi$, this in turn forces $\varphi=\varphi^{\prime}$. Finally, $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)=$ $R_{3}\left(\varphi^{\prime}\right) R_{1}\left(\theta^{\prime}\right) R_{3}\left(\psi^{\prime}\right)$ has now reduced to $R_{3}(\varphi) R_{1}(\theta) R_{3}(\psi)=R_{3}(\varphi) R_{1}(\theta) R_{3}\left(\psi^{\prime}\right)$, which is equivalent to $R_{3}(\psi)=R_{3}\left(\psi^{\prime}\right)$. Since $0 \leq \psi, \psi^{\prime}<2 \pi$, this forces $\psi=\psi^{\prime}$.
(c) Assume that $\theta \neq 0$. Then $\hat{n}=\frac{\hat{e}_{3} \times \hat{\imath}_{3}}{\left|\hat{e}_{3} \times \hat{\imath}_{3}\right|}$ is perpendicular to both $\hat{\imath}_{3}$ and \hat{e}_{3}. We defined θ to be the angle of rotation about \hat{n} that maps \hat{e}_{3} to $\hat{\imath}_{3}$. By definition, this is the angle between \hat{e}_{3} and $\hat{\imath}_{3}$. Let $P_{x y}$ denote the $x y$-plane and P_{3} denote the plane containing \hat{e}_{3} and $\hat{\imath}_{3}$. Then \hat{n} lies in $P_{x y}$ (because it is perpendicular to \hat{e}_{3}) and is perpendicular to P_{3}. The projection of $\hat{\imath}_{3}$ onto the $x y$-plane (denoted $\vec{\pi}_{3}$ in the figure below) lies in both P_{3} and $P_{x y}$ and so is an angle $\frac{\pi}{2}$ from \hat{n}. We defined φ to be the angle between \hat{e}_{1} and \hat{n}.

