MATH 420 Problem Set 8 Solutions

1. Let \((X, \mathcal{M}, \mu)\) be a measure space and \(f : X \to [0, \infty)\) a measurable function. Define, for each \(E \in \mathcal{M}, \lambda(E) = \int_E f \, d\mu\). Prove that \(\lambda\) is a measure on \(\mathcal{M}\) and that \(\int g \, d\mu = \int g \, d\lambda\) for all measurable functions \(g : X \to [0, \infty)\).

Solution. Proof that \(\lambda\) is a measure: That \(\lambda(E) = \int_E f \, d\mu \geq 0\) is obvious because \(f(x) \geq 0\) for all \(x \in X\). That \(\lambda(\emptyset) = \int_{\emptyset} f \, d\mu = \int f \, d\mu = 0\) is also obvious. If \(\{E_n\}_{n \in \mathbb{N}} \subset \mathcal{M}\) is a countable collection of disjoint subsets of \(X\) and \(E = \bigcup_{n=1}^{\infty} E_n\), then

\[
\lambda(E) = \int_E f \, d\mu = \int \sum_{n=1}^{\infty} \chi_{E_n} f \, d\mu = \sum_{n=1}^{\infty} \int \chi_{E_n} f \, d\mu = \sum_{n=1}^{\infty} \lambda(E_n)
\]

by the monotone convergence theorem. So we have countable additivity.

Proof that \(\int g f \, d\mu = \int g \, d\lambda\): If \(g\) is the simple function \(\sum_{j=1}^{n} a_j \chi_{E_j}\) for some \(\{a_1, \ldots, a_n\} \subset \mathbb{R}\) and \(\{E_1, \ldots, E_n\} \subset \mathcal{M}\), then

\[
\int g f \, d\mu = \int \left(\sum_{j=1}^{n} a_j \chi_{E_j} \right) f \, d\mu = \sum_{j=1}^{n} a_n \int \chi_{E_j} f \, d\mu = \sum_{j=1}^{n} a_n \lambda(E_j) = \int g \, d\lambda
\]

For general measurable \(g : X \to [0, \infty)\), let, for each \(m, n \in \mathbb{N}\), \(E_{m,n} = \{ x \in X \mid \frac{m-1}{m} \leq g(x) < \frac{m}{m} \}\) and, for each \(n \in \mathbb{N}\), \(g_n = \sum_{m=1}^{\infty} \frac{m-1}{m} \chi_{E_{m,n}}\). Then \(\{g_n\}\) is a sequence of simple, measurable functions that increase pointwise to \(g\). Hence, by the monotone convergence theorem (twice),

\[
\int g f \, d\mu = \int \lim_{n \to \infty} g_n f \, d\mu = \lim_{n \to \infty} \int g_n f \, d\mu = \lim_{n \to \infty} \int g_n \, d\lambda = \int \lim_{n \to \infty} g_n \, d\lambda = \int g \, d\lambda
\]

2. Let \((X, \mathcal{M}, \mu)\) be a measure space and \(f_n : X \to [0, \infty)\) be a sequence of measurable functions that decreases to the function \(f\). Prove that if \(\int f_1 \, d\mu < \infty\), then \(\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu\). Is the implication still valid when \(\int f_1 \, d\mu = \infty\)?

Solution. Set \(g = f_1 - f\) and, for each \(n \in \mathbb{N}\), \(g_n = f_1 - f_n\). Then \(\{g_n\}\) is a sequence of nonnegative, measurable functions that increases pointwise to \(g\). Hence, by the monotone convergence theorem,

\[
\int f_1 \, d\mu - \int f \, d\mu = \int g \, d\mu = \int \lim_{n \to \infty} g_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu = \lim_{n \to \infty} \left(\int f_1 \, d\mu - \int f_n \, d\mu \right)
\]

\[
= \int f_1 \, d\mu - \lim_{n \to \infty} \int f_n \, d\mu
\]

This gives the desired result, when \(\int f_1 \, d\mu < \infty\). If \(\int f_1 \, d\mu = \infty\) then the conclusion \(\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu\) need not be true. For example, if \(X = \mathbb{R}\), \(\mu\) is the Lebesgue measure and \(f_n\) is the characteristic function of \([n, \infty)\), then \(f = 0\), \(\int f \, d\mu = 0\), but \(\int f_n \, d\mu = \infty\) for all \(n \in \mathbb{N}\).

3. Prove the following variant of Fatou’s lemma:

Let \((X, \mathcal{M}, \mu)\) be a measure space and \(E \in \mathcal{M}\). Let \(g \in L^1(X)\) be nonnegative. Assume that, for each \(n \in \mathbb{N}\), \(f_n : X \to \mathbb{R}\) is measurable and \(f_n(x) \geq -g(x)\) for all \(x \in E\). Then

\[
\int_E \liminf_{n \to \infty} f_n(x) \, d\mu(x) \leq \liminf_{n \to \infty} \int_E f_n(x) \, d\mu(x)
\]

What is the analog of Fatou’s lemma for nonpositive functions?
Note: In class, we defined \(\int f(x) \, d\mu(x) \) only for \(f \in L^1(X, \mu) \) and for \(f \geq 0 \) measurable. The \(f_n \)'s in this problem need not be \(L^1 \) and need not nonnegative. Part of this problem is to extend the definition of \(\int f(x) \, d\mu(x) \) to a class of functions that include the \(f_n \)'s.

Solution. To this point, we have only defined \(\int f(x) \, d\mu(x) \) for \(f \in L^1(X, \mu) \) and for \(f \geq 0 \) measurable. We now extend the definition to any measurable function \(f : X \to \mathbb{R} \) for which at least one of \(\max\{f, 0\} \), \(\max\{-f, 0\} \) is in \(L^1(X, \mu) \) by

\[
\int f(x) \, d\mu(x) = \begin{cases}
+\infty & \text{if } \max\{f, 0\} \notin L^1, \max\{-f, 0\} \in L^1 \\
-\infty & \text{if } \max\{f, 0\} \in L^1, \max\{-f, 0\} \notin L^1 \\
\max\{f, 0\} \, d\mu - \max\{-f, 0\} \, d\mu & \text{if } \max\{f, 0\} \in L^1, \max\{-f, 0\} \in L^1
\end{cases}
\]

The \(f_n \)'s of this question are in this class for every \(n \in \mathbb{N} \). Furthermore, if \(f \) is in this class, \(g \in L^1 \) and \(a, b \in \mathbb{R} \), then \(af + bg \) is in this class and \(\int (af + bg) \, d\mu = a \int f \, d\mu + b \int g \, d\mu \) (under the convention that \(0 \cdot \infty = 0 \)).

Define \(h_n(x) = f_n(x) + g(x) \). Then \(h_n \geq 0 \) and by (the original) Fatou’s lemma

\[
\int_E \liminf_{n \to \infty} f_n(x) \, d\mu(x) = \int_E \left\{ \liminf_{n \to \infty} h_n(x) - g(x) \right\} \, d\mu(x)
\]

\[
= \int_E \liminf_{n \to \infty} h_n(x) \, d\mu(x) - \int_E g(x) \, d\mu(x) \quad \text{since } g \in L^1
\]

\[
\leq \liminf_{n \to \infty} \int_E h_n(x) \, d\mu(x) - \int_E g(x) \, d\mu(x)
\]

\[
= \liminf_{n \to \infty} \int_E [h_n(x) - g(x)] \, d\mu(x)
\]

\[
= \liminf_{n \to \infty} \int_E f_n(x) \, d\mu(x)
\]

Now for the analog of Fatou’s lemma for nonpositive functions. If \(f_n : X \to \mathbb{R} \) is measurable and nonpositive, then, setting \(h_n = -f_n \)

\[
\int_E \limsup_{n \to \infty} f_n(x) \, d\mu(x) = \int_E \limsup_{n \to \infty} -h_n(x) \, d\mu(x)
\]

\[
= - \int_E \liminf_{n \to \infty} h_n(x) \, d\mu(x)
\]

\[
\geq - \liminf_{n \to \infty} \int_E h_n(x) \, d\mu(x) \quad \text{since } a \leq b \Rightarrow -a \geq -b
\]

\[
= \limsup_{n \to \infty} \int_E -h_n(x) \, d\mu(x)
\]

\[
= \limsup_{n \to \infty} \int_E f_n(x) \, d\mu(x)
\]

So the analog of Fatou’s lemma for nonpositive functions is

Lemma. Let \((X, \mathcal{M}, \mu)\) be a measure space and \(E \in \mathcal{M} \). Let, for each \(n \in \mathbb{N} \), \(f_n : X \to \mathbb{R} \) be measurable and nonpositive. Then

\[
\int_E \limsup_{n \to \infty} f_n(x) \, d\mu(x) \geq \limsup_{n \to \infty} \int_E f_n(x) \, d\mu(x)
\]
4. Compute the following limits and justify the calculations.

(a) \(\lim_{n \to \infty} \int_0^\infty (1 + \frac{x}{n})^{-n} \sin \frac{x}{n} \, dx \)

(b) \(\lim_{n \to \infty} \int_0^1 (1 + nx^2)(1 + x^2)^{-n} \, dx \)

(c) \(\lim_{n \to \infty} \int_0^\infty \frac{1}{1+nx^2} n \sin \frac{x}{n} \, dx \)

(d) \(\lim_{n \to \infty} \int_a^\infty \frac{n}{1+nx^2} \, dx \) (The answer depends on whether \(a > 0 \), \(a = 0 \) or \(a < 0 \). How does this accord with the various convergence theorems?)

Solution.

(a) By the binomial expansion, if \(x \geq 0 \) and \(n \geq 2 \), then

\[
(1 + \frac{x}{n})^n \geq 1 + nx + \binom{n}{2} \left(\frac{x}{n} \right)^2 = 1 + x + \frac{n-1}{2n} x^2 \geq 1 + x + \frac{1}{4} x^2
\]

Since the integrand is bounded in absolute value by the \(L^1 \) function \(\frac{1}{1+x^2+x^4/4} \) and converges pointwise to zero as \(n \to \infty \) (since \(\sin \frac{x}{n} \) converges to zero as \(n \to \infty \) for every fixed \(x \) and the other factor is uniformly bounded), the integral converges to zero by the dominated convergence theorem.

(b) By the binomial expansion, if \(x \geq 0 \) and \(n \geq 2 \), then

\[
(1 + x^2)^n \geq 1 + nx^2 + \binom{n}{2} x^4 = 1 + nx^2 + \frac{n(n-1)}{2} x^4
\]

so that the integrand

\[
(1 + nx^2)(1 + x^2)^{-n} \leq \frac{1 + nx^2}{1 + nx^2 + \frac{n(n-1)}{2} x^4}
\]

is bounded, for \(n \geq 2 \), by the \(L^1 \) function 1 and converges pointwise to zero as \(n \to \infty \), except at \(x = 0 \). So the integral converges to zero by the dominated convergence theorem.

(c) Recall that \(|\sin y| \leq |y| \) for all \(y \in \mathbb{R} \). (This obvious for \(|y| \geq 1 \) since \(|\sin y| \leq 1 \). For \(0 \leq y \leq 1 \) use the Taylor series expansion for \(\sin y \) and the alternating series test. For \(y < 0 \), use \(|\sin y| = |\sin |y||. \)

Consequently \(n \sin \frac{x}{n} \leq x \) for all \(x \geq 0 \) and \(n \in \mathbb{N} \). So the integrand \(\frac{1}{1+x^2} \sin \frac{x}{n} \) is bounded in magnitude by the \(L^1 \) function \(\frac{1}{1+x^2} \) and converges pointwise to \(\frac{1}{1+x^2} \) as \(n \to \infty \) (since \(\lim_{y \to 0} \sin y / y = 1 \)).

So, by the dominated convergence theorem, the integral converges to

\[
\int_0^\infty \frac{1}{1+x^2} \, dx = \frac{\pi}{2}
\]

(d) Making the change of variables \(y = nx \)

\[
\int_a^\infty \frac{n}{1+n^2} \, dx = \int_{na}^\infty \frac{1}{1+y^2} \, dy = -\arctan(na) \overset{n \to \infty}{\longrightarrow} \frac{\pi}{2} \begin{cases}
\frac{\pi}{2} & \text{if } a = 0 \\
\frac{\pi}{4} & \text{if } a < 0 \\
0 & \text{if } a > 0
\end{cases}
\]

Before making the change of variables, the integrand converges pointwise to zero as \(n \to \infty \), except at \(x = 0 \). For \(a > 0 \), we may apply the dominated convergence theorem with \(g(x) = \frac{1}{2x^2} \), since \(\frac{n}{1+n^2} \, dx \leq \frac{n}{n^2x^2} \leq \frac{1}{2x^2} \). But for \(a \leq 0 \), the integrand is not bounded by a fixed \(L^1 \) function for all \(n \) (for example, if \(n = \frac{1}{x} \), then \(\frac{n}{1+n^2x^2} = \frac{1}{2x^2} \)), so we may not apply the usual convergence theorems.

5. Let \(f \in L^1(\mathbb{R}, m) \), with \(m \) being Lebesgue measure, and set \(F(x) = \int_x^\infty f(t) \, dm(t) \). Prove that \(F \) is continuous on \(\mathbb{R} \).

Solution. Suppose that \(f \) is not continuous on \(\mathbb{R} \). Then there are \(x \in \mathbb{R} \), \(\varepsilon > 0 \) and a sequence of points \(\{x_n\} \in \mathbb{N} \) in \(\mathbb{R} \) that converge to \(x \) such that \(|F(x) - F(x_n)| > \varepsilon \) for all \(n \in \mathbb{N} \). Set

\[
h_n(t) = \begin{cases}
f(t) & \text{if } t \leq x_n \\
0 & \text{otherwise}
\end{cases} \quad h(t) = \begin{cases}
f(t) & \text{if } t \leq x \\
0 & \text{otherwise}
\end{cases}
\]

Then \(|h_n(t)|, |h(t)| \leq |f(t)| \in L^1 \) and \(\{h_n\} \) converges pointwise almost everywhere (in fact everywhere, except possibly at \(x \)) to \(h(x) \). So, by the dominated convergence theorem,

\[
\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \int h_n(t) \, dt = \int h(t) \, dt = F(x)
\]

which contradicts \(|F(x) - F(x_n)| \geq \varepsilon \).