1. Let \(m \) be the Lebesgue measure on \(\mathbb{R} \), \(m^* \) be the corresponding outer measure and \(\mathcal{L} \) be the collection of Lebesgue measurable sets. Define, for any \(E \subseteq \mathbb{R} \) and any \(t \in \mathbb{R} \), the sets \(E + t = \{ x + t \mid x \in E \} \) and \(tE = \{ tx \mid x \in E \} \).

(a) Prove that if \(E \subseteq \mathbb{R} \) and \(t \in \mathbb{R} \), then \(m^*(E + t) = m^*(E) \) and \(m^*(tE) = |t| m^*(E) \).

(b) Prove that if \(E \in \mathcal{L} \) and \(t \in \mathbb{R} \), then \(E + t \in \mathcal{L} \), \(tE \in \mathcal{L} \), \(m(E + t) = m(E) \) and \(m(tE) = |t| m(E) \).

Solution. (a) Denote

\[
M(E) = \left\{ \sum_j (b_j - a_j) \mid E \subseteq \bigcup (a_j, b_j) \right\}
\]

The countable collection \(\{(a_j, b_j)\} \) of open intervals covers \(E \) if and only if the countable collection \(\{(a_j + t, b_j + t)\} \) of open intervals covers \(E + t \). Since \(\sum_j [(b_j + t) - (a_j + t)] = \sum_j [b_j - a_j] \), we have that \(M(E) = M(E + t) \) and \(m^*(E) = \inf M(E) = \inf M(E + t) = m^*(E + t) \).

- Let \(t > 0 \). The countable collection \(\{(a_j, b_j)\} \) of open intervals covers \(E \) if and only if the countable collection \(\{(ta_j, tb_j)\} \) of open intervals covers \(tE \). Since \(\sum_j (tb_j - ta_j) = t \sum_j [b_j - a_j] \), we have that \(M(tE) = tM(E) \) and \(m^*(tE) = \inf tM(E) = \inf tm(E) = tm^*(E) \).

- Let \(t < 0 \). The countable collection \(\{(a_j, b_j)\} \) of open intervals covers \(E \) if and only if the countable collection \(\{(tb_j, ta_j)\} \) of open intervals covers \(tE \). Since \(\sum_j (ta_j - tb_j) = |t| \sum_j [b_j - a_j] \), we have that \(M(tE) = |t|M(E) \) and \(m^*(tE) = \inf |t|M(E) = \inf |t|m(E) = |t|m^*(E) \).

- Finally, if \(t = 0 \), then,

\[
tE = \begin{cases} 0 & \text{if } E = \emptyset \\ \{0\} & \text{if } E \neq \emptyset \end{cases}
\]

and in both cases \(tE \in \mathcal{L} \) with \(m^*(tE) = 0 = |t|m^*(E) \).

(b) I’ll give the proof for \(E + t \). The other cases are virtually identical. Let \(F \subseteq \mathbb{R} \) and set \(F' = F - t \). By part (a),

\[
m^*(F) = m^*(F' + t) = m^*(F')
\]

\[
m^*(F \cap (E + t)) = m^*((F' \cap t) \cap (E + t)) = m^*((F' \cap E) + t) = m^*(F' \cap E)
\]

\[
m^*(F \cap (E + t)^c) = m^*((F' + t) \cap (E^c + t)) = m^*((F' \cap E^c) + t) = m^*(F' \cap E^c)
\]

Hence

\[
m^*(F) = m^*(F \cap (E + t)) + m^*(F \cap (E + t)^c) \iff m^*(F') = m^*(F' \cap E) + m^*(F' \cap E^c)
\]

So \(E + t \in \mathcal{L} \iff E \in \mathcal{L} \). By part (a), if \(E, E + t \in \mathcal{L} \), then \(m(E) = m^*(E) = m^*(E + t) = m(E + t) \).

2. Let \(X \) and \(Y \) be nonempty sets and let \(\mathcal{N} \) be a \(\sigma \)-algebra on \(Y \) and let \(f : X \to Y \). Prove that \(\mathcal{M} = \{ f^{-1}(N) \mid N \in \mathcal{N} \} \) is a \(\sigma \)-algebra and is the smallest \(\sigma \)-algebra on \(X \) with respect to which \(f \) is measurable. It is sometimes called the \(\sigma \)-algebra generated by \(f \).

Solution. Proof that \(\mathcal{M} \) is a \(\sigma \)-algebra: If \(A \in \mathcal{M} \), there is an \(N \in \mathcal{N} \) such that \(A = f^{-1}(N) \). Then \(A^c = f^{-1}(N^c) \in \mathcal{M} \), so \(\mathcal{M} \) is closed under taking complements. If, for each \(n \in \mathbb{N} \), \(A_n \in \mathcal{M} \), then there is, for each \(n \in \mathbb{N} \), an \(N_n \in \mathcal{N} \) such that \(A_n = f^{-1}(N_n) \). Then \(\bigcup_n A_n = \bigcup_n f^{-1}(N_n) = f^{-1}(\bigcup_n N_n) \in \mathcal{M} \), so \(\mathcal{M} \) is closed under countable unions. So \(\mathcal{M} \) is a \(\sigma \)-algebra.

Proof of minimality: Let \(\mathcal{M}' \) be a \(\sigma \)-algebra of subsets of \(X \) and assume that \(f \) is \((\mathcal{M}', \mathcal{N}) \)-measurable. Then, for each \(N \in \mathcal{N} \), \(f^{-1}(N) \in \mathcal{M}' \). Hence \(\mathcal{M} \subseteq \mathcal{M}' \).
3. Let \(\{X, \mathcal{M}\} \) be a measure space and \(f : X \to \mathbb{R} \). Prove that \(f \) is measurable if and only if \(f^{-1}((q, \infty)) \in \mathcal{M} \) for all \(q \in \mathbb{Q} \).

Solution. It suffices to prove that \(\{ (q, \infty) \mid q \in \mathbb{Q} \} \) generates \(\mathcal{B}_{\mathbb{R}} \). Since \(\{ (a, \infty) \mid a \in \mathbb{R} \} \) generates \(\mathcal{B}_{\mathbb{R}} \), the desired conclusion follows from the observation that, for each \(a \in \mathbb{R} \), there is a sequence \(\{q_n\}_{n \in \mathbb{N}} \) of rational numbers that decrease to \(a \) so that

\[
(a, \infty) = \bigcup_{n=1}^{\infty} (q_n, \infty)
\]

4. Let \(\{X, \mathcal{M}\} \) be a measure space. Find sufficient conditions on \(\{X, \mathcal{M}\} \) such that there exists a bounded family of measurable functions \(\{f_\alpha : X \to \mathbb{R}\}_{\alpha \in \mathcal{I}} \) whose supremum is not measurable. (\(\mathcal{I} \) will be uncountable.)

Solution. It suffices that \(\mathcal{M} \neq \mathcal{P}(X) \) and that there exists a subset \(E \) of \(X \) that is not measurable but that is an (uncountable) disjoint union \(\bigcup_{\alpha \in \mathcal{I}} E_\alpha \) of measurable sets. (This will be the case if, for example, every single point subset of \(X \) is measurable but \(\mathcal{M} \neq \mathcal{P}(X) \).) Then, the characteristic function \(\chi_{E_\alpha} \) is measurable for each \(\alpha \in \mathcal{I} \) but

\[
\chi_E = \sup_{\alpha \in \mathcal{I}} \chi_{E_\alpha}
\]

is not measurable.

5. Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is monotone, then it is Borel measurable.

Solution. We may assume, without loss of generality, that \(f \) is nondecreasing. (Otherwise, replace \(f \) by \(-f \).) Let \(a \in \mathbb{R} \). Set

\[
M_a = \inf \{ x \in \mathbb{R} \mid f(x) > a \}
\]

(with \(M_a = -\infty \) when \(f(x) > a \) for all \(x \in \mathbb{R} \) and \(M_a = \infty \) when \(f(x) \leq a \) for all \(x \in \mathbb{R} \)). If, for some \(x \in \mathbb{R} \), \(f(x) > a \), then \(f(y) > a \) for all \(y \geq x \). Hence \(f^{-1}((a, \infty)) \) is either \(\emptyset \) (if \(M_a = \infty \)) or \(\mathbb{R} \) (if \(M_a = -\infty \)) or \((M_a, \infty) \) or \([M_a, \infty) \). These are all Borel sets, so \(f^{-1}((a, \infty)) \) is a Borel set. By a Lemma proven in class, this implies that \(f \) is Borel measurable.

6. Let \(\{X, \mathcal{M}\} \) be a measure space and \(\{f_n : X \to \mathbb{R}\}_{n \in \mathbb{N}} \) a sequence of measurable functions. Prove that

\[
\{ x \in X \mid \lim_{n \to \infty} f_n(x) \text{ exists} \} \in \mathcal{M}.
\]

Solution. Recall that \(\lim_{n \to \infty} f_n(x) \) exists if and only if the sequence \(\{f_n(x)\}_{n \in \mathbb{N}} \) of real numbers is Cauchy. That is

\[
\forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ such that } m, n \geq N \Rightarrow |f_m(x) - f_n(x)| < \varepsilon
\]

Define, for each \(\varepsilon > 0 \) and \(n, m \in \mathbb{N} \)

\[
E_{\varepsilon, m, n} = \{ x \in X \mid -\varepsilon < f_m(x) - f_n(x) < \varepsilon \}
\]

As \(f_m - f_n \) is measurable, we have that \(E_{\varepsilon, m, n} \in \mathcal{M} \). As \(\mathcal{M} \) is a \(\sigma \)-algebra,

\[
E_{\varepsilon, N} = \{ x \in X \mid n, m \geq N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon \} = \bigcap_{n, m \geq N} E_{\varepsilon, m, n} \in \mathcal{M}
\]

\[
E_{\varepsilon} = \{ x \in X \mid \exists N \in \mathbb{N} \text{ such that } n, m \geq N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon \} = \bigcup_{N \in \mathbb{N}} E_{\varepsilon, N} \in \mathcal{M}
\]

\[
E = \{ x \in X \mid \lim_{n \to \infty} f_n(x) \text{ exists} \} = \bigcap_{p \in \mathbb{N}} E_{2^{-p}} \in \mathcal{M}
\]
7. Let X be a nonempty set and \mathcal{M} a σ-algebra of subsets of X. A function $f : X \to \mathbb{R}$ is said to be measurable on $A \in \mathcal{M}$ if $f^{-1}(B) \cap A \in \mathcal{M}$ for all Borel sets B. Equivalently, f is measurable on A if the restriction of f to A is \mathcal{M}_A-measurable, where $\mathcal{M}_A = \{ E \cap A \mid E \in \mathcal{M} \}$. Let $A,B \in \mathcal{M}$ with $X = A \cup B$. Prove that $f : X \to \mathbb{R}$ is measurable if and only if f is measurable on A and on B.

Solution. Let $C \in \mathcal{B}_{\mathbb{R}}$.
- If f is measurable on A and on B, then

 $$f^{-1}(C) \cap A, f^{-1}(C) \cap B \in \mathcal{M} \Rightarrow f^{-1}(C) = (f^{-1}(C) \cap A) \cup (f^{-1}(C) \cap B) \in \mathcal{M}$$

 because \mathcal{M} is a σ-algebra.
- Conversely, if f is measurable, then $f^{-1}(C) \in \mathcal{M}$ and, since $A,B \in \mathcal{M}$ and \mathcal{M} is a σ-algebra, $f^{-1}(C) \cap A \in \mathcal{M}$ and $f^{-1}(C) \cap B \in \mathcal{M}$, so that f is measurable on A and on B.

8. Let X be a nonempty set and \mathcal{M} a σ-algebra of subsets of X. Define $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$ and $\mathcal{B}_{\mathbb{R}} = \{ E \subseteq \mathbb{R} \mid E \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}} \}$.

(a) Prove that $\mathcal{B}_{\mathbb{R}}$ is a σ-algebra.
(b) Prove that $f : X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$-measurable if and only if $f^{-1}(\{ \infty \}) \in \mathcal{M}$, $f^{-1}(\{-\infty\}) \in \mathcal{M}$ and f is measurable on $f^{-1}(\mathbb{R})$.

Solution. (a) If $E \in \mathcal{B}_{\mathbb{R}}$, then $(\mathbb{R} \setminus E) \cap \mathbb{R} = \mathbb{R} \setminus (E \cap \mathbb{R}) \in \mathcal{B}_{\mathbb{R}}$, so that $\mathbb{R} \setminus E \in \mathcal{B}_{\mathbb{R}}$. If, for each $n \in \mathbb{N}$, $E_n \in \mathcal{B}_{\mathbb{R}}$, then $(\cup_n E_n) \cap \mathbb{R} = \cup_n (E_n \cap \mathbb{R}) \in \mathcal{B}_{\mathbb{R}}$, so that $\cup_n E_n \in \mathcal{B}_{\mathbb{R}}$.

(b) Denote $X_\infty = f^{-1}(\{ \infty \})$, $X_{-\infty} = f^{-1}(\{-\infty\})$ and $X_\mathbb{R} = f^{-1}(\mathbb{R})$. These three sets are disjoint and have union X.

- If f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$-measurable, then, as $\{ \infty \}$, $\{-\infty\}$ and \mathbb{R} are all in $\mathcal{B}_{\mathbb{R}}$, we have that X_∞, $X_{-\infty}$ and $X_\mathbb{R}$ are all in \mathcal{M}. Furthermore, if $C \in \mathcal{B}_{\mathbb{R}}$, then $f^{-1}(C) \cap X_\mathbb{R} = f^{-1}(C) \cap f^{-1}(\mathbb{R}) = f^{-1}(C \cap \mathbb{R}) \in \mathcal{M}$ so that f is measurable on $X_\mathbb{R}$.

- Conversely, suppose that $X_\infty, X_{-\infty} \in \mathcal{M}$ and that f is measurable on $X_\mathbb{R}$. Let $C \in \mathcal{B}_{\mathbb{R}}$. Then

 $$f^{-1}(C) = f^{-1}(C \cap \{ \infty \}) \cup f^{-1}(C \cap \{-\infty\}) \cup f^{-1}(C \cap \mathbb{R})$$

 $$= (X_\infty \text{ or } \emptyset) \cup (X_{-\infty} \text{ or } \emptyset) \cup (f^{-1}(C) \cap X_\mathbb{R}) \in \mathcal{M}$$

 so that f is measurable.

9. Let (X, \mathcal{M}, μ) be a measure space. Prove that the following implications are true if and only if μ is complete.

(a) Let $f,g : X \to \mathbb{R}$. If f is measurable and $f = g$ μ-a.e., then g is measurable.

(b) Let $f : X \to \mathbb{R}$ and $f_n : X \to \mathbb{R}$ for all $n \in \mathbb{N}$. If f_n is measurable for all $n \in \mathbb{N}$ and $\{f_n\}$ converges μ-a.e. to f, then f is measurable.

Solution.

- First suppose that μ is complete.

 (a) Let $E \in \mathcal{M}$ be such that $\mu(E) = 0$ and $f(x) = g(x)$ for all $x \in E^c$. Then, for all $a \in \mathbb{R}$

 $$g^{-1}((a, \infty)) = \{ x \in X \mid g(x) > a \}$$

 $$= \{ x \in E^c \mid g(x) > a \} \cup \{ x \in E \mid g(x) > a \}$$

 $$= \{ x \in E^c \mid f(x) > a \} \cup \{ x \in E \mid g(x) > a \}$$

 $$= (E^c \cap f^{-1}((a, \infty))) \cup \{ x \in E \mid g(x) > a \} \in \mathcal{M}$$

 so g is measurable.
(b) Let $E \in \mathcal{M}$ be such that $\mu(E) = 0$ and $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in E^c$. Define

$$\phi_n(x) = \begin{cases} f_n(x) & \text{if } x \in E^c \\ 0 & \text{if } x \in E \end{cases} \quad \phi(x) = \begin{cases} f(x) & \text{if } x \in E^c \\ 0 & \text{if } x \in E \end{cases}$$

By part (a), ϕ_n is measurable for all $n \in \mathbb{N}$ (since f_n is measurable and $f_n = \phi_n$ a.e. for all $n \in \mathbb{N}$). Since $\phi(x) = \lim_{n \to \infty} \phi_n(x)$ for all $x \in X$, ϕ is measurable. By part (a), f is measurable (since ϕ is measurable and $f = \phi$ a.e.).

• **Now suppose that μ is not complete.** Then there is an $N \in \mathcal{M}$ with $\mu(N) = 0$ and an $E \subset N$ with $E \notin \mathcal{M}$. Then $f = 0$, $g = \chi_E$ provides a counterexample for the implication of part (a) since $g^{-1}(\{1\}) = E \notin \mathcal{M}$ ensures that g is not measurable. And $f_n = 0$ for all $n \in \mathbb{N}$ and $f = \chi_E$ provides a counterexample for the implication of part (b).