MATH 420 Problem Set 5 Solutions

1. Let \(X \) be a nonempty set and \(\mu^* \) an outer measure on \(X \).
 (a) Prove that if \(N \subset X \) obeys \(\mu^*(N) = 0 \), then \(N \) is measurable.
 (b) Prove that if \(A, B \subset X \) and \(A \) is measurable and \(\mu^*(A \Delta B) = 0 \), then \(B \) is measurable.
 Solution. (a) Let \(E \subset X \). By subadditivity, \(\mu^*(E) \leq \mu^*(E \cap N) + \mu^*(E \cap N^c) \). Since \(E \cap N \subset N \) and \(E \cap N^c \subset E \), we have \(\mu^*(E \cap N) \leq \mu^*(N) = 0 \) and \(\mu^*(E \cap N^c) \leq \mu^*(E) \) and hence \(\mu^*(E \cap N) + \mu^*(E \cap N^c) \leq \mu^*(E) \). So \(\mu^*(E) = \mu^*(E \cap N) + \mu^*(E \cap N^c) \) for all \(E \subset X \) and \(N \) is measurable.
 (b) As \(A \cap B^c, B \cap A^c \subset A \Delta B \), we have \(\mu^*(A \cap B^c) = \mu^*(B \cap A^c) = 0 \). So, by part (a), \(A \cap B^c \) and \(B \cap A^c \) are measurable. Hence so are \((A \cap B^c)^c = A^c \cup B \) and \(B = (B \cap A) \cup (B \cap A^c) = (A \cap (A \cap B^c)^c) \cup (B \cap A^c) \) since the collection of measurable sets is a \(\sigma \)-algebra.

2. Let \(0 \leq \alpha \leq 1 \). Find a Lebesgue measurable set \(F_\alpha \subset [0,1] \) that is dense in \([0,1]\) and has \(m(F_\alpha) = \alpha \).
 Solution. \(F_\alpha = \left([0,\alpha] \cap \mathbb{R} \setminus \{Q\} \right) \cup \left([\alpha,1] \cap \{Q\} \right) \). It is dense because both \(\{Q\} \) and \(\mathbb{R} \setminus \{Q\} \) are dense in \(\mathbb{R} \).
 It is measurable because
 \(\{Q\} \) is measurable (it has measure zero)
 \([0,\alpha] \) and \([\alpha,1] \) are measurable (they are both Borel)
 \(\mathcal{M} \) is a \(\sigma \)-algebra
 It has measure \(\alpha \) because \(m([\alpha,1] \cap \{Q\}) \leq m(\{Q\}) = 0 \) and
 \[m([0,\alpha] \cap \mathbb{R} \setminus \{Q\}) = m([0,\alpha]) - m([0,\alpha] \cap \{Q\}) = m([0,\alpha]) = \alpha \]

3. Find \(F \) such that \(\mu = \mu_F \) (on \(B_\mathbb{R} \)), if \(\mu \) is the measure given by:
 (a) \(\mu(E) = \mu_G(E) + \mu_H(E) \) (where \(G, H \) are fixed functions)
 (b) \(\mu(E) = \mu_G(E \cap (u,v)) \) (where \(u < v \) are fixed constants)
 Solution. (a) For all \(a < b \),
 \[
 \mu((a,b]) = \mu_G((a,b]) + \mu_H((a,b])
 \]
 \[= G(b) - G(a) + H(b) - H(a)\]
 \[= F(b) - F(a) \text{ where } F(x) = G(x) + H(x)\]
 \[= \mu_F((a,b])\]
 So \(F(x) = G(x) + H(x) \) does the job.
 (b) For all \(a < b \),
 \[
 \mu((a,b]) = \mu_G((a,b] \cap (u,v]) = \begin{cases}
 \mu_G(\{\max\{a,u\}, \min\{b,v\}\}) & \text{if } b > u \text{ and } a < v \\
 \mu_G(\emptyset) & \text{if } b \leq u \text{ or } a \geq v
 \end{cases}
 \]
 \[= \begin{cases}
 G(\min\{b,v\}) - G(\max\{a,u\}) & \text{if } b > u \text{ and } a < v \\
 0 & \text{if } b \leq u \text{ or } a \geq v
 \end{cases}
 \]
 \[= \begin{cases}
 G(b) - G(u) & \text{if } u < b \leq v \text{ and } a \leq u \\
 G(b) - G(a) & \text{if } u < b \leq v \text{ and } a > u \\
 G(v) - G(u) & \text{if } v < b \text{ and } a \leq u \\
 G(v) - G(a) & \text{if } v < b \text{ and } u < a < v
 \end{cases}
 \]
 \[= F(b) - F(a) \text{ where } F(x) = \begin{cases}
 G(x) & \text{if } x \geq v \\
 G(u) & \text{if } x < u \\
 G(x) & \text{if } u \leq x \leq v \\
 G(u) & \text{if } x \leq u
 \end{cases}
 \]
 \[= \mu_F((a,b]) \]
 So this \(\uparrow \uparrow F \) does the job.
4. Let \(\mu \) be a Lebesgue-Stieltjes measure on \(\mathbb{R} \) and \(M_\mu \), the set of \(\mu \)-measurable sets.

(a) Prove that if \(E \in M_\mu \), then
\[
\mu(E) = \sup \{ \mu(K) \mid K \subset E, \ K \text{ compact} \}
\]

(b) Let \(E \subset \mathbb{R} \). Prove that \(E \) is \(\mu \)-measurable if and only if \(E = H \cup N \) where \(H \) is a countable union of compact sets and \(\mu^*(N) = 0 \).

Solution.

(a) Call the right hand side \(\nu(E) \). That \(\nu(E) \leq \mu(E) \) is obvious because \(\mu(K) \leq \mu(E) \) for all measurable \(K \subset E \).

Proof that \(\mu(E) \leq \nu(E) \) **when** \(E \) **is compact:** This is obvious because we may choose \(K = E \).

Proof that \(\mu(E) \leq \nu(E) \) **when** \(E \) **is bounded but not closed:** Let \(\epsilon > 0 \). We proved in class that there is an open set \(O \) such that \(O \supset \bar{E} \setminus E \) and \(\nu(O) \leq \mu(\bar{E} \setminus E) + \epsilon \). Then \(K = \bar{E} \setminus O \) is compact and is contained in \(E \) since \(\bar{E} \cap O^c \subset \bar{E} \cap (\bar{E} \cap E)^c = \bar{E} \cap (\bar{E} \cup E) \). Hence
\[
\nu(E) \geq \mu(K) = \mu(\bar{E} \setminus O) \geq \mu(\bar{E} \setminus E) = \mu(E) + \mu(\bar{E} \setminus E) - \mu(O) \geq \mu(E) - \epsilon \quad \forall \epsilon > 0 \Rightarrow \nu(E) \geq \mu(E)
\]

(b) **Proof that** \(E = H \cup N \Rightarrow E \in M_\mu \): This is obvious because \(H \in B_{\mathbb{R}} \subset M_\mu \), \(N \in M_\mu \) by problem 1a and \(M_\mu \) is closed under finite unions.

Proof that \(E \in M_\mu \Rightarrow E = H \cup N \text{ when } \mu(E) < \infty \): By part (a), there is, for each \(j \in \mathbb{N} \) a compact set \(K_j \subset E \) with \(\mu(E) \leq \mu(K_j) + \frac{1}{2^j} \). Then \(H = \bigcup_{j=1}^{\infty} K_j \), \(N = E \setminus H \) does the job since, for every \(j \in \mathbb{N} \)
\[
\mu(N) = \mu(E \setminus H) \leq \mu(E \setminus K_j) \leq \frac{1}{2^j}
\]

Proof that \(E \in M_\mu \Rightarrow E = H \cup N \text{ for general } E \in M_\mu \): Let, for each \(n \in \mathbb{Z} \), \(E_n = E \cap (n, n+1] \). By the case just handled, \(E_n = H_n \cup \tilde{N}_n \) with \(H_n \) a countable union of compact sets and \(\tilde{N}_n \) a null set. Then \(H = \bigcup_{n=-\infty}^{\infty} H_n \) and \(N = \bigcup_{n=-\infty}^{\infty} \tilde{N}_n \) do the job, since a countable union of countable sets is countable and since the collection of null sets is closed under countable unions.

5. (a) Let \(A \) be an algebra generating a \(\sigma \)-algebra \(M \), and let \(\mu \) be a finite measure on \(M \). Prove that for any \(E \in M \) and any \(\epsilon > 0 \) there exists \(A \in A \) such that \(\mu(E \Delta A) < \epsilon \). (Hint: show that the collection of all \(E \) which can be approximated in this way is a \(\sigma \)-algebra).

(b) Let \(m \) be the Lebesgue measure and \(L \) be the collection of Lebesgue measurable sets. Prove that if \(E \in L \) and \(m(E) < \infty \) then for any \(\epsilon > 0 \) there exists a finite union of open intervals \(U \) such that \(m(E \Delta U) < \epsilon \).

Solution.

(a) Let \(M_\alpha \) be the set of all \(E \in M \) for which there exists, for each \(\epsilon > 0 \), an \(A \in A \) such that \(\mu(E \Delta A) < \epsilon \).

- If \(E \in A \), we can always choose \(A = E \), so \(A \subset M_\alpha \).
- We now verify that \(M_\alpha \) is closed under taking complements. Let \(E \in M_\alpha \), \(\epsilon > 0 \) and \(A \in A \) such that \(\mu(E \Delta A) < \epsilon \). Then \(A^c \in A \) and
\[
E^c \Delta A^c = (E^c \cap A) \cup (A^c \cap E) = E \Delta A \Rightarrow \mu(E^c \Delta A^c) = \mu(E \Delta A) < \epsilon \Rightarrow E^c \in M_\alpha
\]

2
Since the sum on the left converges, there is an N such that $\mu(E_j \Delta A_j) < \frac{\varepsilon}{2^{j+1}}$. Let $E = \bigcup_{j=1}^{\infty} E_j$ and $\hat{A} = \bigcup_{j=1}^{\infty} A_j$.

Then

$$E \Delta \hat{A} = (E \cap \hat{A}^c) \cup (\hat{A} \cap E^c)$$

$$= \left[\left(\bigcup_j E_j \right) \cap \left(\bigcap_j A_j^c \right) \right] \cup \left[\left(\bigcup_j A_j \right) \cap \left(\bigcap_j E_j^c \right) \right]$$

$$\subseteq \left[\bigcup_j (E_j \cap A_j^c) \right] \cup \left[\bigcup_j (A_j \cap E_j^c) \right]$$

$$= \bigcup_{j=1}^{\infty} \left[(E_j \cap A_j^c) \cup (A_j \cap E_j^c) \right]$$

$$= \bigcup_{j=1}^{\infty} (E_j \Delta A_j)$$

Hence

$$\mu(E \Delta \hat{A}) \leq \sum_{j=1}^{\infty} \mu(E_j \Delta A_j) \leq \sum_{j=1}^{\infty} \frac{\varepsilon}{2^{j+1}} = \frac{\varepsilon}{2}$$

As $\hat{A} \in \mathcal{M}$,

$$\mu(\hat{A}) = \lim_{n \to \infty} \mu\left(\bigcup_{j=1}^{n} A_j \right)$$

by continuity from below. Since $\mu(\hat{A}) < \infty$, there is an $n \in \mathbb{N}$ such that $0 < \mu(\hat{A}) - \mu\left(\bigcup_{j=1}^{n} A_j \right) < \frac{\varepsilon}{2}$. Set $A = \bigcup_{j=1}^{n} A_j$. Then $A \in \mathcal{A}$ and $A^c = \hat{A}^c \cup (\hat{A} \cap A^c)$ so that

$$E \Delta A = (E \cap A^c) \cup (A \cap E^c) \subset (E \cap \hat{A}^c) \cup (\hat{A} \cap A^c) \cup (\hat{A} \cap A^c) = (E \Delta \hat{A}) \cup (\hat{A} \cap A^c)$$

and

$$\mu(E \Delta A) \leq \mu(E \Delta \hat{A}) + \mu(\hat{A} \cap A^c) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow E = \bigcup_{j=1}^{\infty} E_j \in \mathcal{M}_a$$

Thus \mathcal{M}_a is a σ-algebra that contains \mathcal{A} and hence also the σ-algebra generated by \mathcal{A}, which is \mathcal{M}.

(b) We proved in class that

$$m(E) = \inf \left\{ \sum_{j=1}^{\infty} (b_j - a_j) \mid E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$$

So there is a countable collection of open intervals $\{(a_j, b_j)\}_{j \in \mathbb{N}}$ obeying $\hat{U} = \bigcup_{j=1}^{\infty} (a_j, b_j) \supset E$ and

$$\sum_{j=1}^{\infty} (b_j - a_j) \leq m(E) + \frac{\varepsilon}{2} \Rightarrow m(E) + m(\hat{U} \setminus E) = m(\hat{U}) \leq m(E) + \frac{\varepsilon}{2} \Rightarrow m(\hat{U} \setminus E) \leq \frac{\varepsilon}{2}$$

Since the sum on the left converges, there is an $N \in \mathbb{N}$ such that $\sum_{j=N+1}^{\infty} (b_j - a_j) < \frac{\varepsilon}{2}$. Then $U = \bigcup_{j=1}^{N} (a_j, b_j)$ does the job because

$$E \Delta U = (U \setminus E) \cup (E \setminus U) \subset (\hat{U} \setminus E) \cup (\hat{U} \setminus U) \Rightarrow m(E \Delta U) \leq m(\hat{U} \setminus E) + m(\hat{U} \setminus U) < \varepsilon$$