Math 420 Problem Set 4
Due Wednesday, October 9

1. Let $A \subset \mathcal{P}(X)$ be an algebra, μ_0 be a premeasure on A and μ^* the induced outer measure.

 (a) Denote by A_σ the collection of countable unions of sets in A. Prove that, for any $E \subset X$ and $\varepsilon > 0$, there exists an $A \in A_\sigma$ with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \varepsilon$.

 (b) Denote by $A_{\sigma \delta}$ the collection of countable intersections of sets in A_σ. Prove that if E is any subset of X with $\mu^*(E) < \infty$, then E is μ^*-measurable if and only if there exists a $B \in A_{\sigma \delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.

 (c) Prove that if μ_0 is σ-finite, then the restriction $\mu^*(E) < \infty$ of part (b) is superfluous.

2. Let μ^* be an outer measure induced on X from a finite premeasure μ_0. Define, for each $E \subset X$, the inner measure of E to be $\mu^*(E) = \mu_0(X) - \mu^*(E^c)$. Prove that E is μ^*-measurable if and only if $\mu^*(E) = \mu^*(E)$.

3. Let (X, \mathcal{M}, μ) be a σ-finite measure space, μ^* the outer measure induced from μ and $\bar{\mu}$ the restriction of μ^* to \mathcal{M}^*, the collection of μ^*-measurable sets. Prove that $\bar{\mu}$ is the completion of μ.

4. Let A be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ with $-\infty \leq a < b \leq \infty$. (When $b = \infty$, interpret $(a, b]$ as $(a, \infty]$.)

 (a) Prove that A is an algebra on \mathbb{Q}.

 (b) Prove that the σ-algebra generated by A is $\mathcal{P}(\mathbb{Q})$. (Recall that $\mathcal{P}(\mathbb{Q})$ is the set of all subsets of \mathbb{Q}.)

 (c) Define μ_0 on A by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Prove that μ_0 is a premeasure on A and that there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to A is μ_0.

5. Let F be a nondecreasing and right continuous function on \mathbb{R} and let μ_F be a measure that obeys $\mu_F((a, b]) = F(b) - F(a)$ for all $-\infty < a < b < \infty$. Define $F(c^-)$ to be the limit of $F(x)$ as x approaches c from the left. That is,

 $$F(c^-) = \lim_{x \downarrow c} F(x)$$

 Prove that, for all $-\infty < a < b < \infty$,

 $$\mu_F((a]) = F(a) - F(a^-) \quad \mu_F((a, b]) = F(b) - F(a^-)$$

 $$\mu_F([a, b)) = F(b^-) - F(a^-) \quad \mu_F([a, b]) = F(b) - F(a^-)$$