Review of Measurable Functions

Definition 1 (Measurable Functions) Let X and Y be nonempty sets and \mathcal{M} and \mathcal{N} be σ-algebras of subsets of X and Y respectively.

(a) A function $f : X \to Y$ is said to be $(\mathcal{M}, \mathcal{N})$-measurable if

$$E \in \mathcal{N} \implies f^{-1}(E) \equiv \{ x \in X \mid f(x) \in E \} \in \mathcal{M}$$

(b) A function $f : X \to \mathbb{R}$ or \mathbb{C} is said to be \mathcal{M}-measurable if

$$E \in \mathcal{B}_\mathbb{R} \text{ or } \mathcal{B}_\mathbb{C} \implies f^{-1}(E) \equiv \{ x \in X \mid f(x) \in E \} \in \mathcal{M}$$

(c) A function $f : \mathbb{R} \to \mathbb{R}$ or \mathbb{C} is said to be Borel-measurable if it is $(\mathcal{B}_\mathbb{R}, \mathcal{B}_\mathbb{R})$-measurable and is said to be Lebesgue-measurable if it is $(\mathcal{L}, \mathcal{B}_\mathbb{R})$-measurable, where \mathcal{L} is the set of all Lebesgue measurable subsets of \mathbb{R}.

(d) A function $f : X \to [0, \infty]$ is said to be \mathcal{M}-measurable if

$$E \in \mathcal{B}_{\overline{\mathbb{R}}} \implies f^{-1}(E) \in \mathcal{M}$$

where $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is the extended real line and $\mathcal{B}_{\overline{\mathbb{R}}}$ is the σ-algebra

$$\mathcal{B}_{\overline{\mathbb{R}}} = \{ E \subset \overline{\mathbb{R}} \mid E \cap \mathbb{R} \in \mathcal{B}_\mathbb{R} \}$$

Lemma 2 (Continuous Functions) If X and Y are metric spaces and $f : X \to Y$ is continuous, then f is $(\mathcal{B}_X, \mathcal{B}_Y)$-measurable.

Lemma 3 (Real Valued Functions) Let X be a nonempty set and \mathcal{M} be a σ-algebra of subsets of X. Let $f : X \to \mathbb{R}$. Then

$$f \text{ is } \mathcal{M}\text{-measurable} \iff f^{-1}((a, \infty)) \in \mathcal{M} \ \forall \ a \in \mathbb{R}$$

$$\iff f^{-1}([a, \infty)) \in \mathcal{M} \ \forall \ a \in \mathbb{R}$$

$$\iff f^{-1}((\infty, a)) \in \mathcal{M} \ \forall \ a \in \mathbb{R}$$

$$\iff f^{-1}((\infty, a]) \in \mathcal{M} \ \forall \ a \in \mathbb{R}$$

For $f : X \to [0, \infty]$ Then

$$f \text{ is } \mathcal{M}\text{-measurable} \iff f^{-1}((a, \infty]) \in \mathcal{M} \ \forall \ a > 0$$

$$\iff f^{-1}([a, \infty)) \in \mathcal{M} \ \forall \ a \geq 0$$
Theorem 4 (Measurable Function Toolbox) Let \(f, g : X \to \mathbb{R} \) be \(\mathcal{M} \)-measurable and \(c \in \mathbb{R} \), or let \(f, g : X \to [0, \infty] \) be \(\mathcal{M} \)-measurable and \(c > 0 \). Then

(a) \(f + c \) and \(cf \) are \(\mathcal{M} \)-measurable.
(b) \(f + g \) is \(\mathcal{M} \)-measurable.
(c) \(fg \) is \(\mathcal{M} \)-measurable. (As usual, we use the convention that \(0 \times \infty = 0 \).)
(d) \(\max\{f, g\} \) is \(\mathcal{M} \)-measurable. Here \(\max\{f, g\} \) is the function from \(X \) to \(\mathbb{R} \) defined by \(\max\{f, g\}(x) = \max\{f(x), g(x)\} \).
(e) \(\min\{f, g\} \) is \(\mathcal{M} \)-measurable.
(f) Let, for each \(n \in \mathbb{N} \), the function \(f_n : X \to \mathbb{R} \) be \(\mathcal{M} \)-measurable and let \(h : X \to \mathbb{R} \). Or let, for each \(n \in \mathbb{N} \), the function \(f_n : X \to [0, \infty] \) be \(\mathcal{M} \)-measurable and let \(h : X \to [0, \infty] \). If

\[
h(x) = \lim_{n \to \infty} f_n(x)
\]

or

\[
h(x) = \inf_{n \in \mathbb{N}} f_n(x)
\]

or

\[
h(x) = \sup_{n \in \mathbb{N}} f_n(x)
\]

or

\[
h(x) = \liminf_{n \to \infty} f_n(x)
\]

or

\[
h(x) = \limsup_{n \to \infty} f_n(x)
\]

for all \(x \in X \), then \(h \) is \(\mathcal{M} \)-measurable.

(g) If \(h : \mathbb{R} \to \mathbb{R} \) is Borel measurable and \(g : X \to \mathbb{R} \) is \(\mathcal{M} \)-measurable, then \(h \circ g \) is \(\mathcal{M} \) measurable. Here \(h \circ g : X \to \mathbb{R} \) is the function defined by \(h \circ g(x) = h(g(x)) \).

Definition 5 (Almost Everywhere) Let \((X, \mathcal{M}, \mu)\) be a measure space and \(f, g, f_n : X \to \mathbb{R} \) for all \(n \in \mathbb{N} \). Then

(a) \(f = g \) a.e. if there is a set \(E \in \mathcal{M} \) such that \(\mu(E) = 0 \) and \(f(x) = g(x) \) for all \(x \notin E \).
(b) \(f = \lim_{n \to \infty} f_n(x) \) a.e. if there is a set \(E \in \mathcal{M} \) such that \(\mu(E) = 0 \) and \(f = \lim_{n \to \infty} f_n(x) \) for all \(x \notin E \).

Lemma 6 (Almost Everywhere) Let \((X, \mathcal{M}, \mu)\) be a measure space. The following implications are true if and only if \(\mu \) is complete.

(a) Let \(f, g : X \to \mathbb{R} \). If \(f \) is measurable and \(f = g \) \(\mu \)-a.e., then \(g \) is measurable.
(b) Let \(f : X \to \mathbb{R} \) and \(f_n : X \to \mathbb{R} \) for all \(n \in \mathbb{N} \). If \(f_n \) is measurable for all \(n \in \mathbb{N} \) and \(\{f_n\} \) converges \(\mu \)-a.e. to \(f \), then \(f \) is measurable.