Cardinality

The “cardinality” of a set provides a precise meaning to “the number of elements” in the set, even when the set contains infinitely many elements. We start with the following very reasonable definitions of “the set S contains the same number of elements as the set T”, “the set S contains fewer elements than the set T” and “the set S contains more elements then the set T”.

Definition 1 Let S and T be nonempty sets. Then

- $\text{card}(S) = \text{card}(T)$ if and only if there exists an $f : S \to T$ which is one-to-one and onto (i.e. bijective).
- $\text{card}(S) \leq \text{card}(T)$ if and only if there exists an $f : S \to T$ which is one-to-one (i.e. injective).
- $\text{card}(S) \geq \text{card}(T)$ if and only if there exists an $f : S \to T$ which is onto (i.e. surjective).
- $\text{card}(S) < \text{card}(T)$ if and only if $\text{card}(S) \leq \text{card}(T)$ but $\text{card}(S) \neq \text{card}(T)$.
- $\text{card}(S) > \text{card}(T)$ if and only if $\text{card}(S) \geq \text{card}(T)$ but $\text{card}(S) \neq \text{card}(T)$.

Definition 2 Let S be a nonempty set. Then

(a) The set S has $\text{card}(S) = n \in \mathbb{N}$ if $\text{card}(S) = \text{card}\left(\{1, 2, 3, \ldots, n\}\right)$.
(b) The set S is countable if $\text{card}(S) \leq \text{card}(\mathbb{N})$.

The set S is countably infinite if $\text{card}(S) = \text{card}(\mathbb{N})$.
(c) The set S is uncountable if it is not countable.
(d) The set S has the cardinality of the continuum if $\text{card}(S) = \text{card}(\mathbb{R})$.

We now verify that \leq and \geq, in the sense of cardinality, work as expected.

Proposition 3 Let S, T and U be nonempty sets. Then

(a) $\text{card}(S) \leq \text{card}(T)$ if and only if $\text{card}(T) \geq \text{card}(S)$.
(b) Either $\text{card}(S) \leq \text{card}(T)$ or $\text{card}(S) \geq \text{card}(T)$.
(c) If $\text{card}(S) \leq \text{card}(T)$ and $\text{card}(S) \geq \text{card}(T)$, then $\text{card}(S) = \text{card}(T)$.
(d) If $\text{card}(S) \leq \text{card}(T)$ and $\text{card}(T) \leq \text{card}(U)$, then $\text{card}(S) \leq \text{card}(U)$.

Proof: (a) If $\text{card}(S) \leq \text{card}(T)$, then there is a one-to-one function $f : S \to T$. Fix any $s_0 \in S$. As f is one-to-one

$$g : T \to S$$

$$g(t) = \begin{cases} f^{-1}(t) & \text{if } t \text{ is in the range of } f \\ s_0 & \text{otherwise} \end{cases}$$

is a well defined function. As f is defined on all of S the range of f^{-1} is all of S and g maps T onto S, so that $\text{card}(T) \geq \text{card}(S)$.

If $\text{card}(T) \geq \text{card}(S)$, then there is a function g that maps T onto S. So the sets

$$g^{-1}(s) = \{ t \in T \mid g(t) = s \}, \quad s \in S$$
are disjoint and nonempty. For each \(s \in S \) select one \(t_s \in g^{-1}(s) \). Then \(f(s) = t_s \) defines a one-to-one map from \(S \) into \(T \). So \(\text{card}(S) \leq \text{card}(T) \).

(b) Denote by \(\mathcal{I} \) the set of all one-to-one maps defined on a subset of \(S \) and taking values in \(T \). Define a partial ordering on \(\mathcal{I} \) by \(f \leq g \) if

- the domain of \(f \) is contained in the domain of \(g \) and
- \(f(s) = g(s) \) for all \(s \) in the domain of \(f \).

Let \(\mathcal{I}' \) be any linearly ordered\(^{(1)}\) subset of \(\mathcal{I} \). Let \(F \) be the function

- whose domain is the union of all of the domains of functions in \(\mathcal{I}' \) and
- whose value at \(s \) is \(f(s) \) for any \(f \in \mathcal{I}' \) whose domain contains \(s \).

Then \(F \) is an upper bound for \(\mathcal{I}' \). So, by Zorn’s lemma (see Folland page 5), \(\mathcal{I} \) has a maximal element, say \(G \). itemo In the event that the domain of \(G \) is \(S \), then \(G : S \to T \) is one-to-one and \(\text{card}(S) \leq \text{card}(T) \).

- In the event that the range of \(G \) is \(T \), then \(G^{-1} : T \to S \) is one-to-one and \(\text{card}(T) \leq \text{card}(S) \).
- The only remaining possibility is that the domain of \(G \) is a proper subset of \(S \) and the range of \(G \) is a proper subset of \(T \). But then there is an \(s_0 \in S \) that is not in the domain of \(G \) and there is a \(t_0 \in T \) that is not in the range of \(G \), and the function

\[
H(s) = \begin{cases}
G(s) & \text{if } s \text{ is in the domain of } G \\
0 & \text{if } s = s_0
\end{cases}
\]

is a one-to-one map defined on a subset of \(S \) and taking values in \(T \) that obeys \(H > G \). This violates the assumed maximality of \(G \).

(c) Because \(\text{card}(S) \leq \text{card}(T) \) and \(\text{card}(S) \geq \text{card}(T) \), there exist one-to-one maps \(f : S \to T \) and \(g : T \to S \). For each \(s \in S \), define the points \(x_1(s) \in S, x_2(s) \in T, x_3(s) \in S, x_4(s) \in T, \ldots \) as follows.

- \(x_1(s) = s \in S \)
- if \(x_1(s) \in g(T), \) set \(x_2(s) = g^{-1}(x_1(s)) \in T \)
- if \(x_2(s) \in f(S), \) set \(x_3(s) = f^{-1}(x_2(s)) \in S \)
- and so on.

Either

- this process continues indefinitely, or,
- for some odd number \(j \in \mathbb{N} \), \(x_j(s) \in S \setminus g(T) \) and the process terminates or,
- for some even number \(j \in \mathbb{N} \), \(x_j(s) \in T \setminus f(S) \) and the process terminates.

In these three cases we say that

- \(s \) is in \(S_\infty \) (never terminates), or
- \(s \) is in \(S_S \) (terminates with \(x_j(s) \in S \setminus g(T) \) for some odd \(j \)) or
- \(s \) is in \(S_T \) (terminates with \(x_j(s) \in T \setminus f(S) \) for some \(j \) even).

So \(S \) is the disjoint union of \(S_\infty \), \(S_S \) and \(S_T \). Similarly, define \(y_1(t) \in T, y_2(t) \in S, y_3(t) \in T, y_4(t) \in S, \ldots \) by

- \(y_1(t) = t \in T \)
- if \(y_1(t) \in f(S), \) set \(y_2(t) = f^{-1}(y_1(t)) \in S \)

\(^{(1)}\) This means that if \(f, g \in \mathcal{I}' \), then either \(f \leq g \) or \(g \leq f \).
Thus f maps S onto T and S is a one-to-one map from S into T.

Moreover, by construction,

Consequently,

Observ that $y_2(f(s)) = f^{-1}(y_1(f(s))) = f^{-1}(f(s)) = s = x_1(s)$. Similarly, by induction,

for all $j \geq 2$.

Observe that $x_2(g(t)) = g^{-1}(x_1(g(t))) = g^{-1}(g(t)) = t = y_1(t)$. Similarly, by induction,

for all $j \geq 2$.

Consequently,

$s \in S_\infty \implies x_{j-1}(s) \in \begin{cases} g(T) & j \text{ even} \\ f(S) & j \text{ odd} \end{cases} \implies y_j(f(s)) \in \begin{cases} g(T) & j \text{ even} \\ f(S) & j \text{ odd} \end{cases} \implies f(s) \in T_\infty$

That is,

- $f(S_\infty) \subset T_\infty$, and similarly $f(S_S) \subset T_S$, $f(S_T) \subset T_T$, $g(T_\infty) \subset S_\infty$, $g(T_S) \subset S_S$ and $g(T_T) \subset S_T$.

Furthermore, by construction,

- if $s \in S_T$, then $x_1(s)$ is not terminal. That is, $x_1(s) \notin S \setminus g(T)$. So $s = x_1(s) \in g(T)$. That is, g maps onto S_T.
- Similarly, if $t \in T_\infty \cup T_S$, then $y_1(t)$ is not terminal and $y_1(t) \notin T \setminus f(S)$. So $t = y_1(t) \in f(S)$. That is, f maps onto $T_\infty \cup T_S$.

Thus f maps $S_\infty \cup S_S$ one-to-one and onto $T_\infty \cup T_S$ and g maps T_T one-to-one and onto S_T. Hence

$F(s) = \begin{cases} f(s) & \text{if } s \in S_\infty \cup S_S \\ g^{-1}(s) & \text{if } s \in S_T \end{cases}$

maps S one-to-one and onto T.

(d) If f is a one-to-one map from S into T and g is a one-to-one map from T into U, then $h = g \circ f$ is a one-to-one map from S into U. ■

Proposition 4

(a) If I is countable and, for each $i \in I$, S_i is countable, then $\bigcup_{i \in I} S_i$ is countable.

(b) If S is a nonempty set and $P(S)$ is the collection of all subsets of S, then

$$\text{card}(S) < \text{card}(P(S))$$
Proof: (a) Since I is countable, there is a function $f : \mathbb{N} \rightarrow I$ that is onto I. For each $i \in I$, S_i is countable so that there is a function $F_i : \mathbb{N} \rightarrow S_i$ that is onto S_i. We need to define a function $g : \mathbb{N} \rightarrow \bigcup_{i \in I} S_i$ that is onto $\bigcup_{i \in I} S_i$. Every element of $\bigcup_{i \in I} S_i$ is of the form $F_{f(m)}(n)$ for some $(m, n) \in \mathbb{N} \times \mathbb{N}$. Every element (m, n) of $\mathbb{N} \times \mathbb{N}$ has $m + n \in \mathbb{N}$ and $m + n \geq 2$. We first ensure that the range of g contains all $F_{f(m)}(n)$’s with $m + n = 2$ by setting

$$g(1) = F_{f(1)}(1).$$

We next ensure that the range of g contains all $F_{f(m)}(n)$’s with $m + n = 3$ by setting

$$g(2) = F_{f(1)}(2), \quad g(3) = F_{f(2)}(1).$$

We next ensure that the range of g contains all $F_{f(m)}(n)$’s with $m + n = 4$ by setting

$$g(4) = F_{f(1)}(3), \quad g(5) = F_{f(2)}(2), \quad g(6) = F_{f(3)}(1).$$

We next ensure that the range of g contains all $F_{f(m)}(n)$’s with $m + n = 5$ by setting

$$g(7) = F_{f(1)}(4), \quad g(8) = F_{f(2)}(3), \quad g(9) = F_{f(3)}(2), \quad g(10) = F_{f(4)}(1)$$

and so on.

(b) The function $f(s) = \{s\}$ is a one-to-one map from S into $\mathcal{P}(S)$, so it suffices to prove that there does not exist a function $g : S \rightarrow \mathcal{P}(S)$ that is onto $\mathcal{P}(S)$. We find a contradiction to the hypothesis that there does exist such a function. Suppose that $g : S \rightarrow \mathcal{P}(S)$ is onto $\mathcal{P}(S)$. Set $T = \{s \in S \mid s \notin g(s)\} \in \mathcal{P}(S)$. If T is in the range of g, there is an $s_0 \in S$ with $T = g(s_0)$.

- If $s_0 \in T$, then $s_0 \in T = g(s_0)$ and the definition of T gives that $s_0 \notin T$, which is a contradiction.
- If $s_0 \notin T$, then $s_0 \notin T = g(s_0)$ and the definition of T gives that $s_0 \in T$, which is a contradiction.

Example 5
(a) \mathbb{Z} is countable.
(b) \mathbb{Q} is countable.
(c) \mathbb{R} is uncountable.

Proof: (a) The function

$$f(p) = \begin{cases} 1 & \text{if } p = 0 \\ 2p & \text{if } p > 0 \\ -2p + 1 & \text{if } p < 0 \end{cases}$$

is a one-to-one, onto function from \mathbb{Z} to \mathbb{N}.

(b) Write $\mathbb{Q} = \bigcup_{n \in \mathbb{N}} \{\frac{p}{n} \mid p \in \mathbb{Z}\}$ and apply part (a) of Proposition 4.
(c) If \(\mathbb{R} \) were countable, there would be an \(f : \mathbb{N} \rightarrow \mathbb{R} \) that maps \(\mathbb{N} \) onto \(\mathbb{R} \). We shall show that this is impossible by constructing a real number that is not in the range of \(f \). Write out a decimal representation of \(f(n) \) for each \(n \in \mathbb{N} \).

\[
\begin{align*}
f(1) &= d_0^{(1)} \cdot d_1^{(1)} d_2^{(1)} d_3^{(1)} d_4^{(1)} \ldots \\
f(2) &= d_0^{(2)} \cdot d_1^{(2)} d_2^{(2)} d_3^{(2)} d_4^{(2)} \ldots \\
f(3) &= d_0^{(3)} \cdot d_1^{(3)} d_2^{(3)} d_3^{(3)} d_4^{(3)} \ldots \\
&\vdots
\end{align*}
\]

with \(d_0^{(n)} \in \mathbb{Z} \) for each \(n \in \mathbb{N} \) and \(d_m^{(n)} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \) for each \((n, m) \in \mathbb{N} \times \mathbb{N} \). Define, for each \(m \in \mathbb{N} \),

\[
d_m = \begin{cases}
7 & \text{if } d_m^{(n)} \in \{0, 1, 2, 3, 4\} \\
2 & \text{if } d_m^{(n)} \in \{5, 6, 7, 8, 9\}
\end{cases}
\]

Then the decimal number

\[
d = 0 \cdot d_1 d_2 d_3 d_4 \ldots
\]

cannot be \(f(1) \) because its first decimal place is wrong. It cannot be \(f(2) \) because its second decimal place is wrong. And so on. So \(d \) is not in the range of \(f \).