Theorem. (Uniform Convergence of Fourier Series)
If \(f : \mathbb{R} \to \mathbb{C} \) is \(2\pi \)-periodic and is \textbf{piecewise} \(C^1 \), then the Fourier series for \(f \) converges uniformly to \(f \) on any closed interval that does not contain a point of discontinuity of \(f \).

Proof. \textbf{Step 1:} If, in addition, \(f \) is continuous, then the Fourier series of \(f \) converges uniformly to \(f \).

Proof. Done.

\textbf{Step 2:} Define

\[
\sum_{k=1}^{n} \delta_j F(x - p_j)
\]

The Fourier series converges uniformly on any closed interval that does not contain a point in \(2\pi \mathbb{Z} = \{ 2\pi k \mid k \in \mathbb{Z} \} \).

Proof. Done.

\textbf{Step 3:} The general case:
Let the points of discontinuity of \(f \) on \([-\pi, \pi] \) be \(p_1, \ldots, p_m \). Let the jump heights be \(\delta_j = f(p_j^+) - f(p_j^-) \). Write \(f(x) = g(x) + \sum_{j=1}^{m} \delta_j F(x - p_j) \) with \(g(x) = f(x) - \sum_{j=1}^{m} \delta_j F(x - p_j) \). The Fourier series for \(\delta_j F(x - p_j) \) converges uniformly on any closed interval not containing a point of \(p_j + 2\pi \mathbb{Z} \). It suffices to show that \(g(x) \) is continuous. \(g(x) \) is obviously continuous except possibly at the \(p_k \)'s, which are in \([-\pi, \pi] \). To check continuity at \(p_k \)'s

\[
g(p_k^+) - g(p_k^-) = f(p_k^+) - f(p_k^-) - \sum_{j=1}^{n} \delta_j [F((p_k - p_j)^+) - F((p_k - p_j)^-)]
\]

\[
= \delta_k - \sum_{j=1}^{n} \delta_j \begin{cases} 0, & j \neq k; \\ 1, & j = k \end{cases}
\]

\[
= 0
\]

\[
\square
\]

\textbf{Manifolds (See web notes and references therein)}

(1) Definition

(2) Examples

(3) Integration on Manifolds & Stoke’s theorem
Rough Definition

- an \(n \)-dimensional manifold is something that looks locally like \(\mathbb{R}^n \)
- it is a union of subsets with each subset having coordinates that run over any open subset of \(\mathbb{R}^n \)

Definition. (An \(n \)-dimensional manifold)

Let \(\mathcal{M} \) be a metric space.

(a) A **chart** on \(\mathcal{M} \) is a pair \(\{U, \varphi\} \) with \(U \subset \mathcal{M} \) open and \(\varphi: U \to \mathbb{R}^n \) a homeomorphism between \(U \) and \(\varphi(U) \). Think of \(\varphi \) as assigning coordinates in \(\mathbb{R}^n \) to each \(m \in U \).

(b) Two charts \(\{U, \varphi\} \) and \(\{V, \psi\} \) are **compatible** if

\[
\psi \circ \varphi^{-1} : \varphi(U \cap V) \subset \mathbb{R}^n \to \psi(U \cap V) \subset \mathbb{R}^n \\
\varphi \circ \psi^{-1} : \psi(U \cap V) \subset \mathbb{R}^n \to \varphi(U \cap V) \subset \mathbb{R}^n
\]

are \(C^\infty \) (i.e., all partial derivatives are defined and continuous.)
Definition. (Manifold of dimension n) Let \mathcal{M} be a metric space.

(a) A chart is a pair $\{ \mathcal{U}, \varphi \}$ with
 - \mathcal{U} an open subset of \mathcal{M}
 - φ a homeomorphism from \mathcal{U} to an open subset of \mathbb{R}^n

(b) $\{ \mathcal{U}, \varphi \}$ and $\{ \mathcal{V}, \psi \}$ are compatible if $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ are C^∞

(c) An atlas \mathcal{A} for the \mathcal{M} is a set $\mathcal{A} = \{ \{ \mathcal{U}_i, \varphi_i \} \mid i \in I \}$, with I being a completely arbitrary index set, of charts obeying
 - (a) $\{ \mathcal{U}_i \}$ covers \mathcal{M} (i.e., $\bigcup_{i \in I} \mathcal{U}_i = \mathcal{M}$)
 - (b) Every pair of charts in \mathcal{A} is compatible.

A maximal atlas is an atlas \mathcal{A} with the property that $\{ \mathcal{U}, \varphi \}$ being any chart that is compatible with every chart in \mathcal{A} implies $\{ \mathcal{U}, \varphi \} \in \mathcal{A}$.

(d) A manifold of dimension n is a metric space \mathcal{M} together with a maximal atlas \mathcal{A}.

Lemma. Let $\{ \mathcal{U}, \varphi \}$ and $\{ \mathcal{V}, \psi \}$ be

- $\mathcal{U}, \mathcal{V} \in \mathcal{M}$ with $\mathcal{U} \cup \mathcal{V} \neq \emptyset$
- $\varphi : \mathcal{U} \to \mathbb{R}^n$ be a homeomorphism from \mathcal{U} to $\varphi(\mathcal{U}) \subseteq \mathbb{R}^n$ open
- $\psi : \mathcal{V} \to \mathbb{R}^m$ be a homeomorphism from \mathcal{V} to $\psi(\mathcal{V}) \subseteq \mathbb{R}^m$ open
- $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ are C^∞

Proof. Homework problem.

Lemma. If \mathcal{A} is any atlas, then there exists a unique maximal atlas containing \mathcal{A}

Proof. Homework problem. (Hint: Try to guess what the maximal atlas is.)

Example 1. Let \mathcal{M} be an open subset of \mathbb{R}^n (e.g., $\mathcal{M} = \mathbb{R}^n$) and $\mathcal{A} = \{ \{ \mathcal{U}, \varphi \} \mid \mathcal{U} = \mathcal{M}, \varphi = \text{identity map} \}$. Then (\mathcal{U}, φ) is an identity map.

Example 2. Let $\mathcal{M} = S^1 = \{ (x, y) \in \mathbb{R}^n \mid x^2 + y^2 = 1 \}$ and

- $\mathcal{U}_1 = S^1 \setminus \{ (-1, 0) \}$, $\varphi_1(x, y) = \arctan \frac{y}{x} \in (-\pi, \pi)$ is a unique angle with $(x, y) = (\cos \varphi_1, \sin \varphi_1)$
- $\mathcal{U}_2 = S^1 \setminus \{ (1, 0) \}$, $\varphi_2(x, y) = \arctan \frac{y}{x} \in (0, 2\pi)$ is a unique angle with $(x, y) = (\cos \varphi_2, \sin \varphi_2)$
Then \(\{ \{ U_1, \varphi_1 \}, \{ U_2, \varphi_2 \} \} \) is an atlas for \(S^1 \) verification of compatibility:

\[
\begin{align*}
\varphi_1(U_1 \cap U_2) & = (-\pi, 0) \cup (0, \pi) \\
\varphi_2(U_1 \cap U_2) & = (0, \pi) \cup (\pi, 2\pi) \\
\varphi_2 \circ \varphi_1^{-1}(\theta) & = \begin{cases}
\varphi_2 \left(\begin{pmatrix} \cos \theta, \sin \theta \end{pmatrix} \right), & \text{if } -\pi < \theta < 0, \\
\varphi_2 \left(\begin{pmatrix} \cos \theta, \sin \theta \end{pmatrix} \right), & \text{if } 0 < \theta < \pi,
\end{cases} \\
& = \begin{cases}
\theta + 2\pi, & \text{if } -\pi < \theta < 0, \\
\theta, & \text{if } 0 < \theta < \pi,
\end{cases} \\
& \in C^\infty
\end{align*}
\]

Similarly for \(\varphi_1 \circ \varphi_2^{-1} \).

Example. (Any \(n \)-dimensional surface in \(\mathbb{R}^{n+m} \)) Handwavy definition of an \(n \)-dimensional surface in \(\mathbb{R}^{n+m} \)

- a subset of \(\mathbb{R}^{n+m} \) such that locally
 - \(m \) coordinates of points on the surface are determined by the other \(n \) coordinates in a \(C^\infty \) way.

\[
x = -\sqrt{1-y^2} \\
y = -\sqrt{1-x^2}
\]
Example. \((n\text{-dimensional surface in } \mathbb{R}^{m+n})\)

Rough definition: A subset of \(\mathbb{R}^{m+n}\) is an \(n\)-dimensional surface if locally, \(m\) coordinates of points on the surface are determined by the \(n\) other coordinates (i.e. are functions of the other \(n\) coordinates) in a \(C^\infty\) way.

Example.

\[
S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}
\]

For \(y > 0\), \(y = \sqrt{1 - x^2}\)

For \(x < 0\), \(x = -\sqrt{1 - y^2}\)

Formal definition: \(M \subset \mathbb{R}^{m+n}\) is an \(n\)-dimensional surface if, for each \(\vec{z} \in M\), there are

- a neighborhood \(U_{\vec{z}}\) of \(\vec{z}\) in \(\mathbb{R}^{m+n}\)
- \(n\) natural numbers \(1 \leq j_1 < j_2 < \cdots < j_n \leq m+n\) (indices of the independent coordinates)
- \(m\) \(C^\infty\) functions \(f_k(x_{j_1}, \ldots, x_{j_n})\) with \(k \in \{1, \ldots, m+n\} \setminus \{1 \leq j_1 < \cdots < j_n\}\) such that the point \(\vec{x} \in U_{\vec{z}}\) is in \(M\) if and only if \(x_k = f_k(x_{j_1}, \ldots, x_{j_n})\) for all \(k \in \{1, \ldots, m+n\} \setminus \{1 \leq j_1 < \cdots < j_n\}\)

This is a manifold with the atlas

\[
A = \{ \{ M \cap U_{\vec{z}}, \varphi_{\vec{z}} \} \mid \vec{z} \in M \}
\]

where \(\varphi_{\vec{z}}(x_1, \ldots, x_{n+m}) = (x_{j_1}, \ldots, x_{j_n}).\)

Equivalent definition: \(M \subset \mathbb{R}^{m+n}\) is an \(n\)-dimensional surface if, for each \(\vec{z} \in M\), there are

- a neighborhood \(U_{\vec{z}}\) of \(\vec{z}\) in \(\mathbb{R}^{m+n}\)
- \(m\) \(C^\infty\) functions

\[
g_k : U_{\vec{z}} \to \mathbb{R}, \ k = 1, \ldots, m
\]

such that \(\big\{ \nabla g_k(\vec{z}) \mid 1 \leq k \leq m \big\}\) are linearly independent such that the point \(\vec{x} \in U_{\vec{z}}\) is in \(M\) if and only if \(g_k(\vec{x}) = 0\) for all \(1 \leq k \leq m\).

The two definitions are equivalent because of the \ldots
Implicit Function Theorem

Let

- \(m, n \in \mathbb{N} \)
- \(U \subset \mathbb{R}^{m+n} \) be open
- \(\vec{g} : U \rightarrow \mathbb{R}^m \) be \(C^\infty \)

\(\vec{y} \in \mathbb{R}^m \)
\(\vec{x} \in \mathbb{R}^n \)
\(\vec{x}_0 \in \mathbb{R}^n \)
\(\vec{y}_0 \in \mathbb{R}^m \)
\(U, V, W \subset \mathbb{R}^{m+n} \) be open

- \(\vec{g}(\vec{x}_0, \vec{y}_0) = 0 \) for some \(\vec{x}_0 \in \mathbb{R}^n \), \(\vec{y}_0 \in \mathbb{R}^m \) with \((\vec{x}_0, \vec{y}_0) \in U \)
- \(\det \left[\frac{\partial g_i}{\partial y_j}(\vec{x}_0, \vec{y}_0) \right]_{1 \leq i \leq m, 1 \leq j \leq m} \neq 0 \)

Then there exist open sets \(V \subset \mathbb{R}^{m+n} \) and \(W \subset \mathbb{R}^n \) with \(\vec{x}_0 \in W \) and \((\vec{x}_0, \vec{y}_0) \in V \) such that for each \(\vec{x} \in W \), there is a unique \((\vec{x}, \vec{y}) \in V \) with \(\vec{g}(\vec{x}, \vec{y}) = \vec{0} \). Call \(\vec{y} = f(\vec{x}) \). Furthermore, \(f : W \rightarrow \mathbb{R}^m \) is \(C^\infty \) and \(f(\vec{x}_0) = \vec{y}_0 \) and \(\vec{g}(\vec{x}, f(\vec{x})) = \vec{0} \) for all \(\vec{x} \in W \).

Example. (Simple – \(S^1 \))

\[
g(x, y) = x^2 + y^2 - 1, \quad (x_0, y_0) = (0, 1) \\
U = \mathbb{R}^2, \quad V = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}, \quad W = (-1, 1), \quad f(x) = \sqrt{1 - x^2}
\]

Examples. (\(SO(3), O(3) \))

\[
O(3) = \{ 3 \times 3 \text{ real matrices } R \mid R^\dagger R = I \} \\
SO(3) = \{ 3 \times 3 \text{ real matrices } R \mid R^\dagger R = I, \quad \det R = 1 \}
\]

Think of the matrix

\[
\begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{bmatrix}
\]

as a vector in \(\mathbb{R}^9 \). Write \(R^\dagger R = I \) as a linear system of equation.