1. Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ and let $0 \leq r < R$. Prove that $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[-r, r]$.

Solution. Let $\varepsilon > 0$. Pick any r' such that $r < r' < R$. Since R is the radius of convergence, $R = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ and there exists an $N \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} \leq \frac{r}{r'}$, or equivalently $|a_n| \leq r'^{-n}$, for all $n \geq N$. Hence there is a constant C such that $|a_n| \leq C r'^{-n}$ for all $n \geq 0$. So if $|x| \leq r$,

$$\sum_{n=0}^{\infty} a_n x^n \leq \sum_{n=m+1}^{\infty} C r'^{-n} x^n = C r^{-m+1} \frac{1}{1-r'^{-1}} \leq \varepsilon$$

(see Problem Set 4, #4) which is some fixed number, depending on ε, but not on x.

2. Give examples of each of the following. Do not use the examples of chapter 7 of Rudin. Make your examples as simple as possible (for example, step functions). You will be penalized for unnecessary complexity. Sketch graphs of most of the functions involved.

(a) $f_n \to f$ pointwise, but not uniformly or in the mean
(b) $f_n \to f$ in the mean, but not pointwise or uniformly
(c) $f_n \to f$ uniformly, but not in the mean
(d) $f_n \to f$ pointwise, all of the f_n’s continuous, but f not continuous
(e) $f_n \to f$ pointwise, all of the f_n’s bounded in magnitude by 1 and integrable on $[-1, 1]$, but f not integrable on $[-1, 1]$
(f) $f_n \to f$ pointwise, all of the f_n’s and f integrable, but $\int_a^b f_n(x) \, dx \to \int_a^b f(x) \, dx$
(g) $f_n \to f$ uniformly, all of the f_n’s and f integrable, but $\int_{-\infty}^{\infty} f_n(x) \, dx \to \int_{-\infty}^{\infty} f(x) \, dx$
(h) $f_n \to f$ uniformly, all of the f_n’s differentiable, $f_n' \to g$ pointwise, but f not differentiable
(i) $f_n \to f$ uniformly, all of the f_n’s and f differentiable, $f_n' \to g$ pointwise, but $f' \neq g$

Solution. (a) We will use functions on the interval $[0, 1]$. Set $f(x) = 0$ and

$$f_n(x) = \begin{cases} n & \text{if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0 & \text{otherwise} \end{cases}$$

$$\|f_n - f\|_{\infty} = n \to 0 \text{ as } n \to \infty$$

$$\|f_n - f\|_2 = \left[\int_{\frac{1}{n}}^{\frac{2}{n}} n^2 \, dx \right]^{1/2} = \sqrt{n} \to 0 \text{ as } n \to \infty$$

We have pointwise convergence since $f_n(0) = 0$ for all n and $f_n(x) = 0$ for all $n > \frac{2}{x}$.

(b) We will use functions on the interval $[-1, 1]$. Set $f(x) = 0$ and

$$f_n(x) = \begin{cases} n^{1/4} & \text{if } -\frac{1}{2n} \leq x \leq \frac{1}{2n} \\ 0 & \text{otherwise} \end{cases}$$

$$\|f_n - f\|_{\infty} = n^{1/4} \to 0 \text{ as } n \to \infty$$

$$\|f_n - f\|_2 = \left[\int_{-\frac{1}{2n}}^{\frac{1}{2n}} n^{1/2} \, dx \right]^{1/2} = \frac{1}{n^{1/4}} \to 0 \text{ as } n \to \infty$$

We do not have pointwise convergence since $f_n(0) = n^{1/4}$ diverges as $n \to \infty$.

(c) We will use functions $f_n, f : \mathbb{R} \to \mathbb{R}$. Set $f(x) = 0$ and

$$f_n(x) = \begin{cases} \frac{1}{\sqrt{n}} & \text{if } -\frac{1}{\sqrt{n}} \leq x \leq \frac{1}{\sqrt{n}} \\ 0 & \text{otherwise} \end{cases}$$

$$\|f_n - f\|_{\infty} = \frac{1}{\sqrt{n}} \to 0 \text{ as } n \to \infty$$

$$\|f_n - f\|_2 = \left[\int_{-\frac{1}{\sqrt{n}}}^{\frac{1}{\sqrt{n}}} \frac{1}{\sqrt{n}} \, dx \right]^{1/2} = 1 \to 0 \text{ as } n \to \infty$$
(d) We will use functions \(f_n, f : \mathbb{R} \to \mathbb{R} \). Set
\[
f(x) = \begin{cases}
1 & \text{if } x \leq 0 \\
0 & \text{if } x > 0
\end{cases}
\]
\[
f_n(x) = \begin{cases}
1 & \text{if } x \leq 0 \\
1 - nx & \text{if } 0 \leq x \leq \frac{1}{n} \\
0 & \text{if } x \geq \frac{1}{n}
\end{cases}
\]
Then \(f \) is not continuous, but the \(f_n \)'s are continuous and converge pointwise to \(f \).

(e) We will use functions \(f, f_n : [-1, 1] \to [-1, 1] \). Then
\[
f_n(x) = \begin{cases}
1 & \text{if } x = \frac{p}{q} \text{ for some } p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \text{ with } q \leq n \\
0 & \text{otherwise}
\end{cases}
\]
Note that \(f_n(x) = 0 \) except for finitely many \(x \)'s and so is integrable. We showed in class that \(f \) is not integrable. As another example, we can take the \(f, f_n \) of part (d) with
\[
\alpha(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases}
\]
Then every \(f_n \in \mathcal{R}(\alpha) \) on \([-1, 1]\) but \(f \notin \mathcal{R}(\alpha) \) on \([-1, 1]\).

(f) Take the \(f, f_n \) of part (a). Then
\[
\int_0^1 f_n(x) \, dx = 1 \to 0 = \int_0^1 f(x) \, dx
\]

(g) We use functions \(f_n, f : \mathbb{R} \to \mathbb{R} \). Set \(f(x) = 0 \) and
\[
f_n(x) = \begin{cases}
\frac{1}{n} & \text{if } -\frac{n}{2} \leq x \leq \frac{n}{2} \\
0 & \text{otherwise}
\end{cases}
\]
\[
\|f - f_n\|_{\infty} = \frac{1}{n} \to 0 \text{ as } n \to \infty
\]
\[
\int_{-\infty}^{\infty} f_n(x) \, dx = 1 \to 0 = \int_{-\infty}^{\infty} f(x) \, dx
\]

(h) We use functions \(f_n, f, g : \mathbb{R} \to \mathbb{R} \). Set
\[
f_n(x) = \sqrt{x^2 + \frac{1}{n}}
\]
\[
f(x) = |x|
\]
\[
f'_n(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}
\]
\[
g(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x < 0
\end{cases}
\]
Note that \(f_n \) converges uniformly to \(f \) (since, for all \(x > 0 \), \(\frac{d}{dx} [f_n(x) - f(x)] = f'_n(x) - 1 < 0 \), we have that \(\|f_n - f\|_{\infty} \leq f_n(0) - f(0) = \frac{1}{n} \)) and that \(f'_n \) converges pointwise to \(g \) but that \(f \) is not differentiable at \(x = 0 \).
(i) We use functions $f_n, f, g : \mathbb{R} \to \mathbb{R}$.

$$f_n(x) = \begin{cases} 0 & \text{if } x \leq -\frac{1}{n} \\ \frac{x}{n}^2 + x + \frac{1}{n} & \text{if } -\frac{1}{n} \leq x \leq 0 \\ -\frac{x}{n}^2 + x + \frac{1}{n} & \text{if } 0 \leq x \leq \frac{1}{n} \\ \frac{1}{n} & \text{if } x \geq \frac{1}{n} \end{cases}$$

$$f(x) = 0$$

$$f'_n(x) = \begin{cases} 0 & \text{if } x \leq -\frac{1}{n} \\ n x + 1 & \text{if } -\frac{1}{n} \leq x \leq 0 \\ -n x + 1 & \text{if } 0 \leq x \leq \frac{1}{n} \\ 0 & \text{if } x \geq \frac{1}{n} \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

Note that f_n converges uniformly to 0 (since $\|f_n\|_\infty = \frac{1}{n}$) and that f'_n converges pointwise to g which is not equal to $f' = 0$. Two other possible choices are

- $f_n(x) = \frac{x^{n+1}}{n+1}$, $f'_n(x) = x^n$, $f(x) = 0$, $g(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } 0 \leq x < 1 \end{cases}$, with $0 \leq x \leq 1$

- $f_n(x) = \frac{1}{n} e^{-nx}$, $f'_n(x) = e^{-nx}$, $f(x) = 0$, $g(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 < x \leq 1 \end{cases}$, with $0 \leq x \leq 1$

3. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+x^n}$.

(a) Find all values of x in \mathbb{R} for which the series is defined and converges – denote this set D.

(b) Is f continuous on D? Prove or disprove.

(c) Is f bounded on D? Prove or disprove.

(d) Does the above series converge uniformly on D? Prove or disprove.

Solution. (a) If $x = 0$, the series reduces to $\sum_{n=1}^{\infty} 1$, which clearly diverges. If $x = -\frac{1}{m}$ for some $m \in \mathbb{N}$, then the $n = m$ term in the series is not defined. Set $D' = \{0\} \cup \{ -\frac{1}{m} \mid m \in \mathbb{N} \}$ and $D = \mathbb{R} \setminus D'$. I will now prove that if $x \in D$, then the series converges at x. In fact, I will prove that, for every $X > 0$, the series converges uniformly on $\{ x \in \mathbb{R} \mid |x| \geq X \} \cap D$. So let $X > 0$. Then there is an $N \in \mathbb{N}$ such that, for all $n \geq N$ and $|x| \geq X$, $n^2|x| \geq N^2X \geq 2$, so that

$$|1 + n^2x| \geq n^2|x| - 1 = \frac{n^2}{2}|x| + \frac{n^2}{2}|x| - 1 \geq \frac{1}{2}n^2X + \frac{1}{2} \times 2 - 1 = \frac{1}{2}n^2X$$

and hence

$$|\frac{1}{1+x^n}| \leq \frac{2}{X} n^2$$

Since $\sum_{n=N}^{\infty} \frac{1}{n^2}$ converges, the original series converges uniformly on $\{ x \in \mathbb{R} \mid |x| \geq X \} \cap D$, by the Weierstrass M–test. This confirms that $D = \mathbb{R} \setminus D'$.

(b) Yes, f is continuous on D. Let $X > 0$. On $\{ x \in \mathbb{R} \mid |x| \geq X \} \cap D$, $f(x)$ is a uniform limit of continuous partial sums and hence is continuous. Since this is the case for all $X > 0$ and $0 \notin D$, f is continuous on D.

(c) No, f is not bounded. Let $N \in \mathbb{N}$ and consider $x = \frac{1}{N}$. Then, for $n \leq N$, $1 + n^2 x \leq 2$. Consequently,

$$f\left(\frac{1}{N}\right) = \sum_{n=0}^{\infty} \frac{1}{1+n^2/N} \geq \sum_{n=0}^{N} \frac{1}{1+n^2/N} \geq \sum_{n=0}^{N} \frac{1}{2} = \frac{1}{2}(N+1)$$

3
As this is the case for all \(N \in \mathbb{N} \), \(f \) cannot be bounded.

(d) No, \(f \) does not converge uniformly on \(D \). If the series converged uniformly, \(f \) would be bounded on \((0, \infty)\), because each partial sum is bounded on \((0, \infty)\). This would contradict the result of part (c).

4. Let \(f : [a, b] \rightarrow \mathbb{R} \) be nondecreasing and let \(f : [a, b] \times [c, d] \rightarrow \mathbb{R} \). Prove:

(a) If \(f \) is continuous, then \(g(y) = \int_a^b f(x, y) \, dx \) is continuous.

(b) If \(\frac{\partial f}{\partial y} \) is continuous, then \(g(y) = \int_a^b f(x, y) \, dx \) is differentiable with \(g'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) \, dx \).

Solution. Both parts are trivial if \(\alpha(b) = \alpha(a) \), since then \(\alpha \) is constant and \(g \) is identically zero. So assume that \(\alpha(b) > \alpha(a) \).

(a) Since \(f \) is a continuous function defined on a compact set, it is uniformly continuous. That is, for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(|f(u) - f(v)| < \frac{\varepsilon}{\alpha(b) - \alpha(a)}\) for all \(u, v \in [a, b] \times [c, d] \) obeying \(|u - v| < \delta\). Consequently, if \(|y - y'| < \delta\) (the same \(\delta \)), then

\[
|g(y) - g(y')| = \left| \int_a^b [f(x, y) - f(x, y')] \, dx \right| \leq \alpha(b) - \alpha(a) \sup_{x \in [a,b]} |f(x, y) - f(x, y')| \leq \frac{\varepsilon}{\alpha(b) - \alpha(a)} = \varepsilon
\]

(b) Since \(\frac{\partial f}{\partial y} \) is a continuous function defined on a compact set, it is uniformly continuous. That is, for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(|\frac{\partial f}{\partial y}(u) - \frac{\partial f}{\partial y}(v)| < \frac{\varepsilon}{\alpha(b) - \alpha(a)}\) for all \(u, v \in [a, b] \times [c, d] \) obeying \(|u - v| < \delta\). Consequently, for each fixed \(x \in [a, b] \), if \(|y - y'| < \delta\) (the same \(\delta \)), then, by the Mean Value Theorem (the usual MVT in one dimension),

\[
\left| \frac{f(x, y') - f(x, y)}{y' - y} - \frac{\partial f}{\partial y}(x, y) \right| = \left| \frac{\partial f}{\partial y}(x, y'') - \frac{\partial f}{\partial y}(x, y) \right| \quad \text{for some } y'' \text{ between } y' \text{ and } y
\]

and

\[
\left| \frac{g(y') - g(y)}{y' - y} - \int_a^b \frac{\partial f}{\partial y}(x, y) \, dx \right| = \left| \int_a^b \left\{ \frac{f(x, y') - f(x, y)}{y' - y} - \frac{\partial f}{\partial y}(x, y) \right\} \, dx \right| \leq \frac{\varepsilon}{\alpha(b) - \alpha(a)} [\alpha(b) - \alpha(a)] = \varepsilon
\]

This verifies the definition that \(\lim_{y' \to y} \frac{g(y') - g(y)}{y' - y} \) exists and equals \(\int_a^b \frac{\partial f}{\partial y}(x, y) \, dx \).

5. Prove that if \(f : [a, b] \times [c, d] \rightarrow \mathbb{R} \) is continuous, then

\[
\int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy = \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx
\]

Hint: Calculate \(\frac{\partial}{\partial t} \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy \) and \(\frac{\partial}{\partial t} \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx \).

Solution. By the last question, \(\int_c^d f(x, y) \, dy \) is continuous as a function of \(x \) so that \(\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx \) exists for all \(t \in [a, b] \) and, by the fundamental theorem of calculus, is differentiable with respect to \(t \) with derivative \(\int_c^d f(t, y) \, dy \).

Also by the fundamental theorem of calculus, \(\frac{\partial}{\partial t} \int_a^b f(x, y) \, dx \) exists and equals \(f(t, y) \), which is continuous. Note that \(\int_a^b f(x, y) \, dx \) is a function of \(t \) and \(y - \) call it \(h(t, y) \). Hence, by part (b) of the last question, \(\int_c^d h(t, y) \, dy \) exists and is differentiable with respect to \(t \) with derivative \(\int_c^d \frac{\partial h}{\partial t}(t, y) \, dy = \int_c^d f(t, y) \, dy \).

Hence \(\int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy \) and \(\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx \) have the same derivative with respect to \(t \) and are both zero when \(t = a \). So they are equal for all \(t \), including \(t = b \).
Do not hand in problem 6.

6. Find \(\{ a_{m,n} \mid m, n \in \mathbb{N} \} \) obeying

(a) \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} \) exists, but \(\lim_{m \to \infty} a_{m,n} \) does not exist for any \(m \in \mathbb{N} \).

(b) \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} \) exists, \(\lim_{n \to \infty} a_{m,n} \) exists for any \(n \in \mathbb{N} \), but \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} \) does not exist.

(c) \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} \) and \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} \) exist and are equal, but \(\lim_{n \to \infty} a_{n,n} \) does not exist.

(d) \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} \), \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} \) and \(\lim_{n \to \infty} a_{n,n} \) all exist, but are different.

Solution. (a) Let

\[
a_{m,n} = \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m > n \\
0 & \text{if } m < n, \ n - m \text{ odd} \\
1 & \text{if } m < n, \ n - m \text{ even}
\end{cases}
\]

Pictorially

<table>
<thead>
<tr>
<th>[n \to]</th>
<th>[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 0 1 (\ldots \to)</td>
</tr>
<tr>
<td>↓</td>
<td>0 1 0 1 (\ldots \to)</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 (\ldots \to)</td>
</tr>
<tr>
<td></td>
<td>0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 (\to) 0</td>
</tr>
</tbody>
</table>

For any fixed \(n \), \(a_{m,\neq} = 0 \) for all \(m > n \) (the slash through the \(n \) just means that I am thinking of it as being held fixed) and so converges to 0 as \(m \to \infty \). Hence \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = \lim_{n \to \infty} 0 = 0 \). On the other hand, for each fixed \(m \), the sequence \(a_{\neq,n} \) has two subsequential limits (namely 0 and 1) and hence diverges.

(b) Let

\[
a_{m,n} = \begin{cases}
m & \text{if } m < n \\
0 & \text{if } m \geq n
\end{cases}
\]

Pictorially

<table>
<thead>
<tr>
<th>[n \to]</th>
<th>[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 1 (\ldots \to) 1</td>
</tr>
<tr>
<td>↓</td>
<td>0 2 2 (\ldots \to) 2</td>
</tr>
<tr>
<td></td>
<td>0 0 3 (\ldots \to) 3</td>
</tr>
<tr>
<td></td>
<td>0 0 0</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 (\to) 0</td>
</tr>
</tbody>
</table>

For any fixed \(n \), \(a_{m,\neq} = 0 \) for all \(m > n \) and so converges to 0 as \(m \to \infty \). Hence \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = \lim_{n \to \infty} 0 = 0 \). For each fixed \(m \), \(a_{\neq,n} = m \) for all \(n > m \) and so converges to \(m \). But the sequence \(\{m\} \) diverges to \(+\infty \).

(c) Let

\[
a_{m,n} = \begin{cases}
m & \text{if } m = n \\
0 & \text{if } m \neq n
\end{cases}
\]
Pictorially

\[
\begin{array}{c|ccccccc}
 n \rightarrow & 1 & 0 & 0 & 0 & \ldots & \rightarrow & 0 \\
\downarrow & 0 & 2 & 0 & 0 & \ldots & \rightarrow & 0 \\
\downarrow & 0 & 0 & 3 & 0 & \ldots & \rightarrow & 0 \\
\vdots \vdots \vdots & \vdots \vdots \vdots \\
\downarrow \downarrow \downarrow \downarrow & 0 \\
0 & 0 & 0 & 0 & \rightarrow & 0 \\
\end{array}
\]

For any fixed \(n \), \(a_{m,n} = 0 \) for all \(m > n \) and so converges to 0 as \(m \to \infty \). Hence \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = \lim_{m \to \infty} 0 = 0 \). Similarly, for each fixed \(m \), \(a_{n,m} = 0 \) for all \(n > m \) and so converges to 0. Hence \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} = \lim_{n \to \infty} 0 = 0 \). But the sequence \(d_m = a_{m,m} \) diverges to \(+\infty \).

(d) Let

\[
a_{m,n} = \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m > n \\
2 & \text{if } n > m
\end{cases}
\]

Pictorially

\[
\begin{array}{c|ccccccc}
 m \rightarrow & 1 & 2 & 2 & 2 & \ldots & \rightarrow & 2 \\
\downarrow & 0 & 1 & 2 & 2 & \ldots & \rightarrow & 2 \\
\downarrow & 0 & 0 & 1 & 2 & \ldots & \rightarrow & 2 \\
\vdots \vdots \vdots & \vdots \vdots \vdots \\
\downarrow \downarrow \downarrow \downarrow & 2 \\
0 & 0 & 0 & 0 & \rightarrow & 0 \\
\end{array}
\]

For any fixed \(n \), \(a_{m,n} = 0 \) for all \(m > n \) and so converges to 0 as \(m \to \infty \). Hence \(\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = \lim_{n \to \infty} 0 = 0 \). Similarly, for each fixed \(m \), \(a_{n,m} = 2 \) for all \(n > m \) and so converges to 2. Hence \(\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} = \lim_{m \to \infty} 2 = 2 \). But the sequence \(d_m = a_{m,m} = 1 \) converges to 1.