Reduction to the Riemann Integral

Theorem. Let $a < b$. Let $f : [a, b] \to \mathbb{R}$ be bounded and $\alpha : [a, b] \to \mathbb{R}$ have a continuous derivative on $[a, b]$. Then

$$f\alpha' \in \mathcal{R} \text{ on } [a, b] \iff f \in \mathcal{R}(\alpha) \text{ on } [a, b]$$

and, if either integral exists,

$$\int_a^b f(x)\alpha'(x) \, dx = \int_a^b f(x) \, d\alpha(x)$$

Corollary. In the special case that the function f is the constant function $f(x) = 1$, this theorem reduces to

$$\int_a^b \alpha'(x) \, dx = \int_a^b d\alpha(x) = \alpha(b) - \alpha(a)$$

which is half of the fundamental theorem of calculus.

Proof: For any partition $\mathcal{P} = \{a = x_0, \cdots, x_n = b\}$ of $[a, b]$ and any choice $\mathcal{T} = \{t_1, \cdots, t_n\}$ for \mathcal{P}

$$S(\mathcal{P}, \mathcal{T}, f\alpha', x) = \sum_{i=1}^{n} f(t_i)\alpha'(t_i) [x_i - x_{i-1}]$$

and, by the mean value theorem, there is, for each $1 \leq i \leq n$, some $v_i \in [x_{i-1}, x_i]$ such that

$$S(\mathcal{P}, \mathcal{T}, f, \alpha) = \sum_{i=1}^{n} f(t_i) [\alpha(x_i) - \alpha(x_{i-1})]$$

$$= \sum_{i=1}^{n} f(t_i) \alpha'(v_i) [x_i - x_{i-1}]$$

So

$$|S(\mathcal{P}, \mathcal{T}, f\alpha', x) - S(\mathcal{P}, \mathcal{T}, f, \alpha)| \leq \sum_{i=1}^{n} |f(t_i)| |\alpha' (t_i) - \alpha'(v_i)| [x_i - x_{i-1}]$$

Now let $\varepsilon > 0$.

- Since f is assumed to be bounded, there is an $M > 0$ such that $|f(t)| \leq M$ for all $a \leq t \leq b$.
- Since α' is assumed to exist and be continuous on $[a, b]$, it is uniformly continuous on $[a, b]$. Hence, there is a $\delta > 0$ such that $|\alpha'(t) - \alpha'(v)| \leq \frac{\varepsilon}{2M(b-a)}$ for all $t, v \in [a, b]$ with $|t - v| < \delta$.

© Joel Feldman. 2017. All rights reserved. January 20, 2017 Reduction to the Riemann Integral
In particular, if \(\|P\| < \delta \), then \(|t_i - v_i| < \delta \) and hence \(|\alpha'(t_i) - \alpha'(v_i)| \leq \frac{\varepsilon}{2M[b-a]} \) for all \(1 \leq i \leq n \). So, if \(\|P\| < \delta \), we have
\[
\left| S(P, T, f, \alpha) - \int_a^b f d\alpha \right| \leq \sum_{i=1}^n \frac{\varepsilon}{2M[b-a]} [x_i - x_{i-1}]
\leq \frac{\varepsilon}{2} \sum_{i=1}^n [x_i - x_{i-1}] = \frac{\varepsilon}{2}
\]

In the event that \(f \in \mathcal{R}(\alpha) \) on \([a, b] \), there is a partition \(P' \) such that \(P \supset P' \Rightarrow \left| S(P, T, f, \alpha) - \int_a^b f d\alpha \right| < \frac{\varepsilon}{2} \) for all choices \(T \) for \(P \). Choose a partition \(P \) for \([a, b] \) by adding sufficiently many points to \(P' \) that \(\|P\| < \delta \). Then, by the triangle inequality, for any partition \(P \supset P' \) and any choice \(T \) for \(P \),
\[
\left| S(P, T, f, \alpha) - \int_a^b f d\alpha \right| \leq \left| S(P, T, f, \alpha) - S(P, T, f, \alpha) \right| + \left| S(P, T, f, \alpha) - \int_a^b f d\alpha \right| < \varepsilon
\]
as desired. The argument in the case that we assume \(f \in \mathcal{R} \) on \([a, b] \) is identical.